Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Perspektivenwechsel. Bildinformationen anzeigen


Foto: Universität Paderborn

Maximilian Spliethöver

 Maximilian Spliethöver

Social Media in soziotechnischen Systemen

Wissenschaftlicher Mitarbeiter

+49 5251 60-6846

Liste im Research Information System öffnen


Bias Silhouette Analysis: Towards Assessing the Quality of Bias Metrics for Word Embedding Models

M. Spliethöver, H. Wachsmuth, in: Proceedings of the 30th International Joint Conference on Artificial Intelligence (IJCAI 2021), 2021


Playful User-Generated Treatment: A Novel Game Design Approach for VR Exposure Therapy

D. Alexandrovsky, G. Volkmar, M. Spliethöver, S. Finke, M. Herrlich, T. Döring, J.D. Smeddinck, R. Malaka, in: Proceedings of the Annual Symposium on Computer-Human Interaction in Play, Association for Computing Machinery, 2020, pp. 32–45

Overcoming a range of challenges that traditional therapy faces, VRET yields great potential for the treatment of phobias such as acrophobia, the fear of heights. We investigate this potential and present playful user-generated treatment (PUT), a novel game-based approach for VRET. Based on a requirement analysis consisting of a literature review and semi-structured interviews with professional therapists, we designed and implemented the PUT concept as a two-step VR game design. To validate our approach, we conducted two studies. (1) In a study with 31 non-acrophobic subjects, we investigated the effect of content creation on player experience, motivation and height perception, and (2) in an online survey, we collected feedback from professional therapists. Both studies reveal that the PUT approach is well applicable. In particular, the analysis of the user study shows that the design phase leads to increased interest and enjoyment without notably influencing affective measures during the exposure session. Our work can help guiding researchers and practitioners at the intersection of game design and exposure therapy.

    Argument from Old Man's View: Assessing Social Bias in Argumentation

    M. Spliethöver, H. Wachsmuth, in: Proceedings of the 7th Workshop on Argument Mining (ArgMining 2020), 2020, pp. 76-87


    CLEF ProtestNews Lab 2019: Contextualized Word Embeddings for Event Sentence Detection and Event Extraction

    G. Skitalinskaya, J. Klaff, M. Spliethöver, 2019

    In this work we describe our results achieved in the ProtestNews Lab at CLEF 2019. To tackle the problems of event sentence detection and event extraction we decided to use contextualized string embeddings. The models were trained on a data corpus collected from Indian news sources, but evaluated on data obtained from news sources from other countries as well, such as China. Our models have obtained competitive results and have scored 3rd in the event sentence detection task and 1st in the event extraction task based on average F1-scores for different test datasets.

    Is It Worth the Attention? A Comparative Evaluation of Attention Layers for Argument Unit Segmentation

    M. Spliethöver, J. Klaff, H. Heuer, in: Proceedings of the 6th Workshop on Argument Mining, Association for Computational Linguistics, 2019, pp. 74-82

    Attention mechanisms have seen some success for natural language processing downstream tasks in recent years and generated new state-of-the-art results. A thorough evaluation of the attention mechanism for the task of Argumentation Mining is missing. With this paper, we report a comparative evaluation of attention layers in combination with a bidirectional long short-term memory network, which is the current state-of-the-art approach for the unit segmentation task. We also compare sentence-level contextualized word embeddings to pre-generated ones. Our findings suggest that for this task, the additional attention layer does not improve the performance. In most cases, contextualized embeddings do also not show an improvement on the score achieved by pre-defined embeddings.


    If You Ask Nicely: A Digital Assistant Rebuking Impolite Voice Commands

    M. Bonfert, M. Spliethöver, R. Arzaroli, M. Lange, M. Hanci, R. Porzel, in: Proceedings of the 20th ACM International Conference on Multimodal Interaction, 2018

    Liste im Research Information System öffnen

    Die Universität der Informationsgesellschaft