Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Perspektivenwechsel. Bildinformationen anzeigen


Foto: Universität Paderborn

M.Sc. Lukas Johannes Lanza

M.Sc. Lukas Johannes Lanza


Mitglied - Doktorand

+49 5251 60-5015
Technologiepark 21
33100 Paderborn

Liste im Research Information System öffnen


Internal dynamics of multibody systems

L.J. Lanza, Systems & Control Letters (2021)

Tracking control for underactuated non-minimum phase multibody systems

T. Berger, S. Drücker, L.J. Lanza, T. Reis, R. Seifried, Nonlinear Dynamics (2021)

<jats:title>Abstract</jats:title><jats:p>We consider tracking control for multibody systems which are modeled using holonomic and non-holonomic constraints. Furthermore, the systems may be underactuated and contain kinematic loops and are thus described by a set of differential-algebraic equations that cannot be reformulated as ordinary differential equations in general. We propose a control strategy which combines a feedforward controller based on the servo-constraints approach with a feedback controller based on a recent funnel control design. As an important tool for both approaches, we present a new procedure to derive the internal dynamics of a multibody system. Furthermore, we present a feasible set of coordinates for the internal dynamics avoiding the effort involved with the computation of the Byrnes–Isidori form. The control design is demonstrated by a simulation for a nonlinear non-minimum phase multi-input, multi-output robotic manipulator with kinematic loop.</jats:p>

    Representation and stability of internal dynamics

    L.J. Lanza, PAMM (2021)


    Observers for Differential-Algebraic Systems with Lipschitz or Monotone Nonlinearities

    T. Berger, L.J. Lanza, in: Progress in Differential-Algebraic Equations II, 2020

    Output tracking for a non-minimum phase robotic manipulator

    T. Berger, L.J. Lanza, in: arXiv:2001.07535, 2020

    We exploit a recently developed funnel control methodology for linear non-minimum phase systems to design an output error feedback controller for a nonlinear robotic manipulator, which is not minimum phase. We illustrate the novel control design by a numerical case study, where we simulate end-effector output tracking of the robotic manipulator.

      Liste im Research Information System öffnen

      Die Universität der Informationsgesellschaft