Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Der Campus im Frühling. Bildinformationen anzeigen

Der Campus im Frühling.

Foto: Universität Paderborn, Kamil Glabica.

Manuel Webersen, M.Sc.

Kontakt
Publikationen
 Manuel Webersen, M.Sc.

Elektrische Messtechnik (EMT)

Wissenschaftlicher Mitarbeiter - Materialdatencharakterisierung, Materialalterung

Telefon:
+49 5251 60-3017
Büro:
P1.5.18.2
Besucher:
Pohlweg 47-49
33098 Paderborn

Liste im Research Information System öffnen

2020

Analoge Klangsynthese zur Vermittlung von Grundkenntnissen der Signalverarbeitung an Studierende nicht-technischer Fachrichtungen

M. Krumme, M. Webersen, L. Claes, Y. Webersen, in: Fortschritte der Akustik - DAGA 2020, 2020, pp. 542-545


The Influence of Hydrothermal Aging on the Material Properties of Continuous Fiber-Reinforced Thermoplastics and its Non-Destructive Characterization

E. Moritzer, M. Hüttner, B. Henning, M. Webersen, in: Advances in Polymer Processing 2020, Springer, 2020

DOI


pyfds 0.1.3 - modular field simulation tool

L. Claes, M. Webersen. pyfds 0.1.3 - modular field simulation tool. 2020.


Determination of Murnaghan constants of plate-shaped polymers under uniaxial tensile load

S. Johannesmann, S. Becker, M. Webersen, B. Henning, in: SMSI 2020 - Measurement Science, 2020

DOI


2019

Akustische Charakterisierung der mechanischen Eigenschaften künstlich gealterter Polymere

M. Webersen, M. Hüttner, F. Woitschek, E. Moritzer, B. Henning, in: Fortschritte der Akustik - DAGA 2019, 2019


Characterization of the linear-acoustic material behavior of fiber-reinforced composites using lamb waves

S. Johannesmann, M. Webersen, J. Düchting, L. Claes, B. Henning, in: 45th Annual Review of Progress in Quantitative Nondestructive Evaluation , 2019

DOI


2018

Guided ultrasonic waves for determining effective orthotropic material parameters of continuous-fiber reinforced thermoplastic plates

M. Webersen, S. Johannesmann, J. Düchting, L. Claes, B. Henning, Ultrasonics (2018), 84, pp. 53-62

DOI


Einfluss mechanischer Vorspannung auf das mechanische Materialverhalten von Polymeren

M. Webersen, S. Johannesmann, T. Brockschmidt, F. Rump, L. Claes, B. Henning. Einfluss mechanischer Vorspannung auf das mechanische Materialverhalten von Polymeren. 2018.


Akustische Charakterisierung der richtungsabhängigen elastischen Eigenschaften faserverstärkter Kunststoffe

M. Webersen, S. Johannesmann, J. Düchting, L. Claes, B. Henning, in: Fortschritte der Akustik - DAGA 2018, 2018, pp. 1263-1266


An acoustic waveguide-based approach to the complete characterisation of linear elastic, orthotropic material behaviour

S. Johannesmann, J. Düchting, M. Webersen, L. Claes, B. Henning, tm - Technisches Messen (2018), 2018(85), pp. 478-486

DOI


Acoustic material characterization of prestressed, plate-shaped specimens

S. Johannesmann, T. Brockschmidt, F. Rump, M. Webersen, L. Claes, B. Henning, in: Sensoren und Messsysteme, VDE Verlag GmbH, 2018, pp. 231-234


2017

Evaluating the Influence of 3D-Printing Parameters on Acoustic Material Properties

A. Jäger, S. Johannesmann, L. Claes, M. Webersen, B. Henning, M. Kupnik, in: 2017 IEEE IUS~Proceedings, 2017


Inverser Ansatz zur akustischen Charakterisierung plattenförmiger Materialproben

S. Johannesmann, L. Claes, M. Webersen, B. Henning, in: Fortschritte der Akustik - DAGA 2017, Deutsche Gesellschaft für Akustik e.V. 2017, 2017, pp. 999-1002



Ultrasonic measurements in the characterization of viscoelasticity and aging of polymers

F. Bause, L. Claes, M. Webersen, B. Henning, in: PROCEEDINGS -- AMA Conferences 2017, 2017, pp. 414

DOI


Viskoelastizität und Anisotropie von Kunststoffen: Ultraschallbasierte Methoden zur Materialparameterbestimmung

F. Bause, L. Claes, M. Webersen, S. Johannesmann, B. Henning, tm - Technisches Messen (2017), 84(3)

DOI


Acoustic Material Characterization of Additively Manufactured Components

L. Claes, A. Jäger, S. Johannesmann, M. Webersen, M. Kupnik, B. Henning, in: PROCEEDINGS -- AMA Conferences 2017, AMA Service GmbH, 2017, pp. 605-610

DOI


2016

An Approach to Non-Destructive Testing of Aged Polymers

E. Moritzer, M. Hüttner, B. Henning, M. Webersen, 2016


Molekularen Schäden auf der Spur

E. Moritzer, M. Hüttner, B. Henning, M. Webersen, Kunststoffe (2016)(4), pp. 94-96


Zerstörungsfreie Charakterisierung des hydrothermischen Alterungsverhaltens von Polymeren

M. Webersen, M. Hüttner, F. Bause, E. Moritzer, B. Henning, 2016, pp. 683-688

In der zerstörungsfreien Werkstoffprüfung sind bereits zahlreiche Verfahren etabliert, deren Ziel die Detektion makroskopischer Defekt- und Fehlstellen (z.B. Risse, Poren, Fremdeinschlüsse) ist. Insbesondere bei Polymerwerkstoffen muss jedoch auch die Materialalterung auf molekularer Ebene berücksichtigt werden, die sich (zumeist negativ) auf die Materialkenngrößen auswirkt. Gängige Verfahren zur Bestimmung dieser Kenngrößen arbeiten jedoch üblicherweise zerstörend und sind somit beispielsweise für die vorbeugende Instandhaltung oder die Online-Komponentenüberwachung nur eingeschränkt geeignet. In diesem Beitrag wird ein Verfahren zur zerstörungsfreien Charakterisierung des Alterungszustandes von Polymeren vorgestellt. Dazu wird der Zusammenhang zwischen akustisch (zerstörungsfrei, mittels Ultraschall-Transmissionsmessung) bestimmten Kenngrößen und klassisch (zerstörend, z.B. mittels Zugprüfung) bestimmten hydrothermischer Alterung auf das Material Polyamid 6 (PA6) untersucht. Die Ergebnisse Kenngrößen betrachtet. Exemplarisch werden die Auswirkungen zeigen einen engen Zusammenhang zwischen der zerstörend bestimmten Viskositätszahl, die ein Maß für die mittlere Molekülkettenlänge darstellt, und der akustischen Longitudinalwellengeschwindigkeit. Das Molekülkettenabbau (Depolymerisation) bestimmt ist, kann somit auch akustisch und zerstörungsfrei charakterisiert werden. Auf dieser Basis können neuartige, zerstörungsfrei arbeitende Messsysteme entwickelt werden.


Detecting Molecular Damage

E. Moritzer, M. Hüttner, B. Henning, M. Webersen, Kunststoffe International (2016)(4), pp. 43-45


Non-destructive characterization of hygrothermally aged polymers

E. Moritzer, M. Hüttner, B. Henning, M. Webersen, 2016


Ultrasonic transmission measurements in the characterization of viscoelasticity utilizing polymeric waveguides

F. Bause, J. Rautenberg, N. Feldmann, M. Webersen, L. Claes, H. Gravenkamp, B. Henning, Measurement Science and Technology (2016), 27(10)

DOI


Ultraschallbasierte Charakterisierung von gealterten Polymeren

E. Moritzer, M. Hüttner, B. Henning, M. Webersen, in: Jahresmagazin Kunststofftechnik 2016, 2016, pp. 2-7


Characterization of Continuous-fiber Reinforced Thermoplastics Using Thermoacoustically Excited Ultrasonic Lamb Waves

M. Webersen, S. Johannesmann, L. Claes, B. Henning, in: 2016 IEEE IUS~Proceedings, 2016


2015

Identification of temperature-dependent model parameters of ultrasonic piezo-composite transducers

M. Webersen, F. Bause, J. Rautenberg, B. Henning, in: AMA Conferences 2015, 2015, pp. 195-200

When performing measurements, the effects of the measurement system itself on the measured data generally must be eliminated. Consequently, those effects, i.e. the system’s dynamic behavior, need to be known. For the piezo-composite transducers in an ultrasonic transmission line, a model based approach is used to describe their dynamic behavior and take into account its dependence on the environment temperature and the acoustic impedance of the target medium. Temperature-dependent model parameters are presented, which are obtained by performing a multiplepart identification process on the transducer model, based on electrical impedance measurements [1]. The identification process uses an inverse approach for optimizing a subset of the model parameters. Additionally, algorithmic differentiation methods are used to determine accurate derivatives. In a final optimization step, impedance measurements taken at different temperatures are used to determine the temperature dependencies of the model parameters. These can then be used to assess the plausibility of the identification results. Additionally, the parameters can be expressed as polynomials in the temperature to take different operating conditions into account.




2014



Liste im Research Information System öffnen

Die Universität der Informationsgesellschaft