Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Perspektivenwechsel. Bildinformationen anzeigen

Perspektivenwechsel.

Foto: Universität Paderborn

Dr. Ismail Caylak

Kontakt
Publikationen
Dr. Ismail Caylak

Institut für Leichtbau mit Hybridsystemen (ILH)

Mitglied - Wissenschaftlicher Mitarbeiter - ILH-Beauftragter der Fachgruppe für Technische Mechanik

Fakultät für Maschinenbau > Technische Mechanik

Akademischer Oberrat

Telefon:
+49 5251 60-2285
Büro:
P1.2.11.7
Sprechzeiten:

nach Vereinbarung

Besucher:
Pohlweg 47-49
33098 Paderborn

Liste im Research Information System öffnen

2021

Fuzzy and stochastic approach applied to rubber like materials

E. Penner, I. Caylak, R. Mahnken, A. Dridger, Safety and Reliability (2021), pp. 1-19


A deep learning driven pseudospectral PCE based FFT homogenization algorithm for complex microstructures

A. Henkes, I. Caylak, R. Mahnken, Computer Methods in Applied Mechanics and Engineering (2021)


An uncertainty model for the curing process of transversely fiber reinforced plastics

E. Penner, I. Caylak, R. Mahnken, PAMM (2021)


A deep learning driven uncertain full‐field homogenization method

A. Henkes, I. Caylak, R. Mahnken, PAMM (2021)


2020

Mean-field and full-field homogenization with polymorphic uncertain geometry and material parameters

I. Caylak, E. Penner, R. Mahnken, Computer Methods in Applied Mechanics and Engineering (2020)


2019

A fuzzy uncertainty model for analytical and numerical homogenization of transversely fiber reinforced plastics

I. Caylak, E. Penner, R. Mahnken, PAMM (2019)


A possibilistic finite element method for sparse data

A. Dridger, I. Caylak, R. Mahnken, E. Penner, Safety and Reliability (2019), pp. 58-82


A polynomial chaos expanded hybrid fuzzy-stochastic model for transversely fiber reinforced plastics

E. Penner, I. Caylak, A. Dridger, R. Mahnken, Mathematics and Mechanics of Complex Systems (2019), pp. 99-129


2017

MULTIDIMENSIONAL STOCHASTIC MATERIAL MODELING AT LARGE DEFORMATIONS CONSIDERING PARAMETER CORRELATIONS

E. Penner, I. Caylak, R. Mahnken, in: Proceedings of the 2nd International Conference on Uncertainty Quantification in Computational Sciences and Engineering (UNCECOMP 2017), 2017


2016

A linear elastic Fuzzy Finite Element Method with two fuzzy input parameters

A. Dridger, I. Caylak, R. Mahnken, PAMM (2016), pp. 667-668


A Stochastic Finite Element Method with a Deviatoric-volumetric Split for the Stochastic Linear Isotropic Elasticity Tensor

R. Mahnken, I. Caylak, A. Dridger, A Stochastic Finite Element Method with a Deviatoric-volumetric Split for the Stochastic Linear Isotropic Elasticity Tensor (2016)

This paper presents a numerical method for solution of a stochastic partial differential equation (SPDE) for a linear elastic body with stochastic coefficients (random variables and/or random fields). To this end the stochastic finite element method (SFEM) is employed, which uses W IENER’S polynomial chaos expansion in order to decompose the coefficients into deterministic and stochastic parts. As a special case, we consider isotropic material behavior with two fluctuating parameters. Computational approaches involving GALERKIN projection are applied to reduce the SPDE into a system of deterministic PDEs. Furthermore, we consider normally distributed random variables, which are assumed to be stochastically independent, and which establish the number of stochastic dimensions. Subsequently, the resulting finite element equation is solved iteratively. Finally, in a representative example for a plate with a ring hole we study the influence of different variances for material parameters on the variances for the finite element results.


    SFEM for rubber-like materials at large deformations

    E. Penner, I. Caylak, N. Nörenberg, R. Mahnken, PAMM (2016), pp. 675-676


    PC expansion for material parameters using artificial data and statistical methods

    I. Caylak, N. Nörenberg, R. Mahnken, PAMM (2016), pp. 191-192


    2015

    Non-linear Stochastic Finite Element

    I. Caylak, A. Dridger, R. Mahnken, PAMM (2015), pp. 179-180


    Uncertainty quantification for linear elastic bodies with two fluctuating input parameters

    A. Dridger, I. Caylak, R. Mahnken, PAMM (2015), pp. 551-552


    2014

    Experimental Investigation of PC-Films Using Optical Measurements

    C. Dammann, I. Caylak, R. Mahnken, International Polymer Processing (2014), pp. 260-271

    <jats:title>Abstract</jats:title> <jats:p>The alignment of polymer chains is a well known microstructural evolution effect due to straining of polymers. This has a drastic influence on the macroscopic properties of the initially isotropic material. In this work, cold forming is performed at room temperature on a tensile testing machine. Polycarbonate films are examined in two loading phases. In the first phase, the specimen is loaded to induce anisotropy, and in the second, it is re-loaded, while the material direction is varied. The investigations are supported by an optical measurement system to gain knowledge about the inhomogeneous material behavior in the initial loading phase and about the anisotropic homogeneous behavior during the re-loading phase. Two dimensional strain contours are obtained from the test data. Additionally, we propose a method for approximation of the macroscopic true stress and compare the results with a common approach based on volume consistency. In the future, the test data will set a basis for parameter identification of constitutive equations taking into account a combination of inhomogenous and homogenous material behavior, exhibiting strain induced anisotropy.</jats:p>


      Stabilized mixed triangular elements with area bubble functions at small and large deformations

      I. Caylak, R. Mahnken, Computers & Structures (2014), pp. 172-182


      2012

      Modeling of induced anisotropy at large deformations for polymers

      I. Caylak, R. Mahnken, PAMM (2012), pp. 319-320


      2011

      Stabilized mixed triangular finite elements at large deformations using area bubble functions

      I. Caylak, R. Mahnken, K. Widany, PAMM (2011), pp. 201-202


      Stabilization of mixed tetrahedral elements at large deformations

      I. Caylak, R. Mahnken, International Journal for Numerical Methods in Engineering (2011), pp. 218-242



      Mixed finite element formulations with volume bubble functions for triangular elements

      I. Caylak, R. Mahnken, Computers & Structures (2011), pp. 1844-1851


      Optical Measurements for a Cold-Box Sand and Aspects of Direct and Inverse Problems for Micropolar Elasto-Plasticity

      R. Mahnken, I. Caylak, in: Advances in Extended and Multifield Theories for Continua, 2011


      2010

      Stabilized Mixed Tetrahedrals with Volume and Area Bubble Functions at Large Deformations

      K. Widany, I. Caylak, R. Mahnken, PAMM (2010), pp. 227-228


      Thermomechanical characterisation of cold box sand including optical measurements

      I. Caylak, R. Mahnken, International Journal of Cast Metals Research (2010), pp. 176-184


      2008

      On the stabilization of tetrahedral finite elements using volume and area bubble functions

      I. Caylak, R. Mahnken, PAMM (2008), pp. 4040013-4040014


      2007

      Two mixed finite element formulations with area bubble functions for tetrahedral elements

      R. Mahnken, I. Caylak, G. Laschet, Computer Methods in Applied Mechanics and Engineering (2007), pp. 1147-1165


      Stabilization of bi‐linear mixed finite elements for tetrahedra with enhanced interpolation using volume and area bubble functions

      R. Mahnken, I. Caylak, International Journal for Numerical Methods in Engineering (2007), pp. 377-413


      Liste im Research Information System öffnen

      Die Universität der Informationsgesellschaft