936 projects were found

TRR 142 - Hybrid lithium niobate on insulator quantum photonic integrated circuit (C08*)

In this project, we will explore thin-film lithium niobate on insulator (LNOI) as the material platform for quantum photonic integrated circuits. After transfer printing of cavity coupled InAs quantum dots onto a LNOI circuit, we will on-chip frequency convert the on-demand generated photons from the quantum dot using a periodically poled LNOI ...

Duration: 01/2022 - 12/2025

Funded by: DFG

TRR 142 - On-demand ideal photon pair generation for entanglement swapping at telecom frequencies (C09*)

The goal of this project is the demonstration of on-demand ideal photon pair generation for entanglement swapping at telecom frequencies employing quantum dots embedded in circular Bragg grating cavities. The InAs quantum dots in an InxGayAl1-x-yAs-matrix are grown by molecular beam epitaxy and the circular Bragg grating cavity will allow to tune ...

Duration: 01/2022 - 12/2025

Funded by: DFG

TRR 142 - Generation and characterization of quantum light in nonlinear systems: A theoretical analysis (C10*)

We develop novel approaches based on integro-differential equations and quantum-channel descriptions for the tailored generation of nonclassical light and its propagation in structured media. By devising a multilinear process matrix formalism and accounting for complex dispersion in photonic crystals, we characterize quantum properties of light. ...

Duration: 01/2022 - 12/2025

Funded by: DFG

TRR 142 - Compact high performance photon pair source using ultrafast hybrid modulators based on CMOS and LNOI (C11*)

The project aims to study and demonstrate miniaturized sources of decorrelated photon pairs with high repetition rate. The goal will be achieved by jointly integrating high-bandwidth electro-optic modulators, and a specifically tailored parametric down-conversion (PDC) section, both in a lithium-niobate-on-insulator (LNOI) platform. To obtain ...

Duration: 01/2022 - 12/2025

Funded by: DFG

Contact: Christian Kress

PhoQuant: Photonic Quantum Computing - Quantum computing evaluation platform

When a sufficient number of quantum particles are interconnected, quantum computers can handle tasks that are unsolvable for classical computers. This – among other unique selling points – is a major advantage of photonic platforms: Integrated architectures and sophisticated manufacturing processes offer an enormous scaling potential. The aim of ...

Duration: 01/2022 - 12/2026

Funded by: BMBF

Contact: Prof. Dr. Christine Silberhorn, Dr. Benjamin Brecht

Quantum Photonic Technology Education – Professional training for platform-independent and photonic quantum computing

qp-tech.edu started in 2022. It is funded by the Federal Ministry of Education and Research (BMBF). Its goal is to develop a learning program for the industry to get familiar with quantum science. At the department of Computer Science of Paderborn University, we develop the related part to computer science. More information on the project is to be ...

Duration: 01/2022 - 12/2024

Funded by: BMBF

Project image

Photonic Quantum Systems Network (PhoQSNET) - Quantum communication infrastructure

Data security is critical to modern society. From personal data and identity fraud to cyber-attacks threatening the integrity of sovereign nations, the need for secure communication and data processing has never been greater. While quantum networks address some of these issues, in that they can be provably secure for many cryptographic ...

Duration: 01/2022 - 12/2027

Funded by: DFG

SPP 2314: INtegrated TERahErtz sySTems Enabling Novel Functionality (INTEREST)

The vision of the INTEREST SPP is to establish a well-defined terahertz community by following a holistic ‘integration’ approach in a dedicated coordinated initiative. The theme ‘Integrated Terahertz Systems’ will enable unseen functionalities and applications in the field of terahertz science and technologies. To accomplish this aim, effective ...

Duration: 01/2022 - 12/2026

Funded by: DFG

SPP 2314 - MLL-based Integrated THz Frequency Synthesizers (MINTS)

In the project MINTS it is planned to investigate and demonstrate electronic-photonic THz frequency synthesizer architectures which conform to the requirements of integration in silicon photonics (SiPh) and/or Indium Phosphite (InP) photonic technology. Building on the excellent spectral properties of mode-locked lasers (MLL) it is the target to ...

Duration: 01/2022 - 12/2026

Funded by: DFG

Contact: Vijayalakshmi Surendranath Shroff

FOR 2863 - Scalable THz Transceiver Impairment Model

Compared to radios operating at purely optical wavelengths or RF/microwave frequencies, the combination of extremely high absolute bandwidths and high relative bandwidths in the THz frequency regime, paired with the severe performance limitations of technologies operating in the so-called "THz-gap", imposes unique challenges on modern digital ...

Duration: 01/2022 - 09/2025

Funded by: DFG

Contact: Maxim Weizel, M.Sc.