Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Sonniger Start in das neue Semester (April 2023). Bildinformationen anzeigen

Sonniger Start in das neue Semester (April 2023).

Foto: Universität Paderborn, Besim Mazhiqi

Manuel Berkemeier, M.Sc.

Kontakt
Publikationen
 Manuel  Berkemeier, M.Sc.

Institut für Industriemathematik

Mitglied - Wissenschaftlicher Mitarbeiter

Data Science for Engineering

Mitglied - Wissenschaftlicher Mitarbeiter

Telefon:
+49 5251 60-1762

Lehrstuhl für Angewandte Mathematik

Wissenschaftlicher Mitarbeiter


Liste im Research Information System öffnen

2022

Multi-Objective Trust-Region Filter Method for Nonlinear Constraints using Inexact Gradients

M.B. Berkemeier, S. Peitz, in: arXiv:2208.12094, 2022

In this article, we build on previous work to present an optimization algorithm for nonlinearly constrained multi-objective optimization problems. The algorithm combines a surrogate-assisted derivative-free trust-region approach with the filter method known from single-objective optimization. Instead of the true objective and constraint functions, so-called fully linear models are employed and we show how to deal with the gradient inexactness in the composite step setting, adapted from single-objective optimization as well. Under standard assumptions, we prove convergence of a subset of iterates to a quasi-stationary point and if constraint qualifications hold, then the limit point is also a KKT-point of the multi-objective problem.


2021

Derivative-Free Multiobjective Trust Region Descent Method Using Radial Basis Function Surrogate Models

M.B. Berkemeier, S. Peitz, Mathematical and Computational Applications (2021), 26(2), 31

We present a flexible trust region descend algorithm for unconstrained and convexly constrained multiobjective optimization problems. It is targeted at heterogeneous and expensive problems, i.e., problems that have at least one objective function that is computationally expensive. The method is derivative-free in the sense that neither need derivative information be available for the expensive objectives nor are gradients approximated using repeated function evaluations as is the case in finite-difference methods. Instead, a multiobjective trust region approach is used that works similarly to its well-known scalar pendants. Local surrogate models constructed from evaluation data of the true objective functions are employed to compute possible descent directions. In contrast to existing multiobjective trust region algorithms, these surrogates are not polynomial but carefully constructed radial basis function networks. This has the important advantage that the number of data points scales linearly with the parameter space dimension. The local models qualify as fully linear and the corresponding general scalar framework is adapted for problems with multiple objectives. Convergence to Pareto critical points is proven and numerical examples illustrate our findings.


Liste im Research Information System öffnen

Die Universität der Informationsgesellschaft