Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Digitale Infotage für Schüler*innen vom 06.-09. Februar 2023

Photo: Universität Paderborn, Adelheid Rutenburges

Manuel Berkemeier, M.Sc.


Institut für Industriemathematik

Member - Research Associate

Data Science for Engineering

Member - Research Associate

+49 5251 60-1762

Chair of Applied Mathematics

Research Associate

Open list in Research Information System


Multi-Objective Trust-Region Filter Method for Nonlinear Constraints using Inexact Gradients

M.B. Berkemeier, S. Peitz, in: arXiv:2208.12094, 2022

In this article, we build on previous work to present an optimization algorithm for nonlinearly constrained multi-objective optimization problems. The algorithm combines a surrogate-assisted derivative-free trust-region approach with the filter method known from single-objective optimization. Instead of the true objective and constraint functions, so-called fully linear models are employed and we show how to deal with the gradient inexactness in the composite step setting, adapted from single-objective optimization as well. Under standard assumptions, we prove convergence of a subset of iterates to a quasi-stationary point and if constraint qualifications hold, then the limit point is also a KKT-point of the multi-objective problem.


Derivative-Free Multiobjective Trust Region Descent Method Using Radial Basis Function Surrogate Models

M.B. Berkemeier, S. Peitz, Mathematical and Computational Applications (2021), 26(2), 31

We present a flexible trust region descend algorithm for unconstrained and convexly constrained multiobjective optimization problems. It is targeted at heterogeneous and expensive problems, i.e., problems that have at least one objective function that is computationally expensive. The method is derivative-free in the sense that neither need derivative information be available for the expensive objectives nor are gradients approximated using repeated function evaluations as is the case in finite-difference methods. Instead, a multiobjective trust region approach is used that works similarly to its well-known scalar pendants. Local surrogate models constructed from evaluation data of the true objective functions are employed to compute possible descent directions. In contrast to existing multiobjective trust region algorithms, these surrogates are not polynomial but carefully constructed radial basis function networks. This has the important advantage that the number of data points scales linearly with the parameter space dimension. The local models qualify as fully linear and the corresponding general scalar framework is adapted for problems with multiple objectives. Convergence to Pareto critical points is proven and numerical examples illustrate our findings.

Open list in Research Information System

The University for the Information Society