Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

#WirFeiernZukunft - Alle Veranstaltungen: www.upb50.de - 50 Jahre UPB

Foto: Universität Paderborn

Dr. Sofya Maslovskaya

Kontakt
Vita
Publikationen
Dr. Sofya Maslovskaya

Numerik und Steuerung

Mitglied - Postdoc

Büro:
TP21.1.15
Besucher:
Technologiepark 21
33100 Paderborn
Dr. Sofya Maslovskaya
10/2020 - heute

Postdoc

Universität Paderborn

01/2019 - 10/2020

Postdoc

INRIA Sophia-Antipolis Méditerranée,

10/2018 - 12/2018

Research engineer

ENSTA ParisTech.

10/2013 - 10/2018

Ph.D. in Applied Mathematics

ENSTA ParisTech.

09/2014 - 09/2015

Master degree in Applied Mathematics

University of Paris-Sud.

09/2013 - 09/2015

Engineering degree in Applied Mathematics

ENSTA ParisTech.

09/2013 - 07/2015

Master degree in Mathematics

Novosibirsk State University.

09/2009 - 07/2013

Bachelor degree in Mathematics

Novosibirsk State University


Liste im Research Information System öffnen

2022

Turnpike Property in Optimal Microbial Metabolite Production

J. Caillau, W. Djema, J. Gouzé, S. Maslovskaya, J. Pomet, Journal of Optimization Theory and Applications (2022)

<jats:title>Abstract</jats:title><jats:p>We consider the problem of maximization of metabolite production in bacterial cells formulated as a dynamical optimal control problem (DOCP). According to Pontryagin’s maximum principle, optimal solutions are concatenations of singular and bang arcs and exhibit the chattering or <jats:italic>Fuller</jats:italic> phenomenon, which is problematic for applications. To avoid chattering, we introduce a reduced model which is still biologically relevant and retains the important structural features of the original problem. Using a combination of analytical and numerical methods, we show that the singular arc is dominant in the studied DOCPs and exhibits the <jats:italic>turnpike</jats:italic> property. This property is further used in order to design simple and realistic suboptimal control strategies.</jats:p>


2021

Turnpike features in optimal selection of species represented by quota models

W. Djema, L. Giraldi, S. Maslovskaya, O. Bernard, Automatica (2021), 132, 109804

DOI


2020

Injectivity of the inverse optimal control problem for control-affine systems

F. Jean, S. Maslovskaya, in: 2019 IEEE 58th Conference on Decision and Control (CDC), 2020

DOI


On Weyl’s type theorems and genericity of projective rigidity in sub-Riemannian geometry

F. Jean, S. Maslovskaya, I. Zelenko, Geometriae Dedicata (2020), 213(1), pp. 295-314

DOI


The turnpike property in maximization of microbial metabolite production

S. Maslovskaya, J. Caillau, W. Djema, L. Giraldi, J. Jean-Luc, J. Pomet. The turnpike property in maximization of microbial metabolite production. In: IFAC 2020 - 21rst IFAC World Congress, 2020.


Zermelo-Markov-Dubins problem and extensions in marine navigation

J. Caillau, S. Maslovskaya, T. Mensch, T. Moulinier, J. Pomet, in: 2019 IEEE 58th Conference on Decision and Control (CDC), 2020

DOI


2019

Inverse optimal control problem: the linear-quadratic case

F. Jean, S. Maslovskaya, in: 2018 IEEE Conference on Decision and Control (CDC), 2019

DOI


On projective and affine equivalence of sub-Riemannian metrics

F. Jean, S. Maslovskaya, I. Zelenko, Geometriae Dedicata (2019), pp. 279-319

DOI


2018


2017

Inverse Optimal Control Problem: the Sub-Riemannian Case

F. Jean, S. Maslovskaya, I. Zelenko, IFAC-PapersOnLine (2017), pp. 500-505

DOI


Liste im Research Information System öffnen

Die Universität der Informationsgesellschaft