Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Schnee auf dem Campus. Bildinformationen anzeigen

Schnee auf dem Campus.

Foto: Universität Paderborn, Johannes Pauly

Dr. Sofya Maslovskaya

Kontakt
Vita
Publikationen
Dr. Sofya Maslovskaya
10/2020 - heute

Postdoc

Universität Paderborn

01/2019 - 10/2020

Postdoc

INRIA Sophia-Antipolis Méditerranée,

10/2018 - 12/2018

Research engineer

ENSTA ParisTech.

10/2013 - 10/2018

Ph.D. in Applied Mathematics

ENSTA ParisTech.

09/2014 - 09/2015

Master degree in Applied Mathematics

University of Paris-Sud.

09/2013 - 09/2015

Engineering degree in Applied Mathematics

ENSTA ParisTech.

09/2013 - 07/2015

Master degree in Mathematics

Novosibirsk State University.

09/2009 - 07/2013

Bachelor degree in Mathematics

Novosibirsk State University


Liste im Research Information System öffnen

2020

Injectivity of the inverse optimal control problem for control-affine systems

F. Jean, S. Maslovskaya, in: 2019 IEEE 58th Conference on Decision and Control (CDC), 2020


Zermelo-Markov-Dubins problem and extensions in marine navigation*

J. Caillau, S. Maslovskaya, T. Mensch, T. Moulinier, J. Pomet, in: 2019 IEEE 58th Conference on Decision and Control (CDC), 2020


On Weyl's type theorems and genericity of projective rigidity in sub-Riemannian Geometry

F. Jean, S. Maslovskaya, I. Zelenko, in: arXiv:2001.08584, 2020

H. Weyl in 1921 demonstrated that for a connected manifold of dimension greater than $1$, if two Riemannian metrics are conformal and have the same geodesics up to a reparametrization, then one metric is a constant scaling of the other one. In the present paper, we investigate the analogous property for sub-Riemannian metrics. In particular, we prove that the analogous statement, called the Weyl projective rigidity, holds either in real analytic category for all sub-Riemannian metrics on distributions with a specific property of their complex abnormal extremals, called minimal order, or in smooth category for all distributions such that all complex abnormal extremals of their nilpotent approximations are of minimal order. This also shows, in real analytic category, the genericity of distributions for which all sub-Riemannian metrics are Weyl projectively rigid and genericity of Weyl projectively rigid sub-Riemannian metrics on a given bracket generating distributions. Finally, this allows us to get analogous genericity results for projective rigidity of sub-Riemannian metrics, i.e.when the only sub-Riemannian metric having the same sub-Riemannian geodesics, up to a reparametrization, with a given one, is a constant scaling of this given one. This is the improvement of our results on the genericity of weaker rigidity properties proved in recent paper arXiv:1801.04257[math.DG].


    2019

    On projective and affine equivalence of sub-Riemannian metrics

    F. Jean, S. Maslovskaya, I. Zelenko, Geometriae Dedicata (2019), pp. 279-319


    Inverse optimal control problem: the linear-quadratic case

    F. Jean, S. Maslovskaya, in: 2018 IEEE Conference on Decision and Control (CDC), 2019


    2018


    2017

    Inverse Optimal Control Problem: the Sub-Riemannian Case * *This work was supported by the iCODE Institute project funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02, by the Grant ANR-15-CE40-0018 of the ANR and by grant ANR-11-LABX-0056-LMH, LabEx LMH, in a joint call with PGMO.I. Zelenko is supported by NSF grant DMS-1406193

    F. Jean, S. Maslovskaya, I. Zelenko, IFAC-PapersOnLine (2017), pp. 500-505


    Liste im Research Information System öffnen

    Die Universität der Informationsgesellschaft