Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Die Universität Paderborn im Februar 2023 Bildinformationen anzeigen

Die Universität Paderborn im Februar 2023

Foto: Universität Paderborn, Hannah Brauckhoff

M.Sc. Jan Stenner

Kontakt
Publikationen
M.Sc. Jan Stenner

C-LAB

Wissenschaftlicher Mitarbeiter

Software Innovation Campus Paderborn (SICP)

Wissenschaftlicher Mitarbeiter

Data Science for Engineering

Mitglied - Wissenschaftlicher Mitarbeiter

Telefon:
+49 5251 60-6057
Büro:
O4.119
Besucher:
Pohlweg 51
33098 Paderborn

Liste im Research Information System öffnen

2023

Distributed Control of Partial Differential Equations Using Convolutional Reinforcement Learning

S. Peitz, J. Stenner, V. Chidananda, O. Wallscheid, S.L. Brunton, K. Taira, in: arXiv:2301.10737, 2023

We present a convolutional framework which significantly reduces the complexity and thus, the computational effort for distributed reinforcement learning control of dynamical systems governed by partial differential equations (PDEs). Exploiting translational invariances, the high-dimensional distributed control problem can be transformed into a multi-agent control problem with many identical, uncoupled agents. Furthermore, using the fact that information is transported with finite velocity in many cases, the dimension of the agents' environment can be drastically reduced using a convolution operation over the state space of the PDE. In this setting, the complexity can be flexibly adjusted via the kernel width or by using a stride greater than one. Moreover, scaling from smaller to larger systems -- or the transfer between different domains -- becomes a straightforward task requiring little effort. We demonstrate the performance of the proposed framework using several PDE examples with increasing complexity, where stabilization is achieved by training a low-dimensional deep deterministic policy gradient agent using minimal computing resources.


Liste im Research Information System öffnen

Die Universität der Informationsgesellschaft