Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Die Universität Paderborn im Februar 2023 Bildinformationen anzeigen

Die Universität Paderborn im Februar 2023

Foto: Universität Paderborn, Hannah Brauckhoff

Adriana Bocchini

 Adriana Bocchini

Theoretische Materialphysik

Mitglied - Doktorandin

Quantum Materials Modelling

Mitglied - Doktorandin

+49 5251 60-2324
+49 5251 60-3435
Pohlweg 55
33098 Paderborn

Liste im Research Information System öffnen


Electrochemical performance of $\mathrmKTiOAsO_4$ (KTA) in potassium-ion batteries from density-functional theory

A. Bocchini, U. Gerstmann, T. Bartley, H. Steinrück, G. Henkel, W.G. Schmidt, Phys. Rev. Materials (2022), 6, pp. 105401

Oxygen vacancies in $\mathrmKTiOPO_4$: Optical absorption from hybrid DFT

A. Bocchini, U. Gerstmann, W.G. Schmidt, Phys. Rev. B (2022), 105, pp. 205118


DC Ionic Conductivity in KTP and Its Isomorphs: Properties, Methods for Suppression, and Its Connection to Gray Tracking

L. Padberg, V. Quiring, A. Bocchini, M. Santandrea, U. Gerstmann, W.G. Schmidt, C. Silberhorn, C. Eigner, Crystals (2022), 12(10)

We study the DC conductivity in potassium titanyl phosphate (KTiOPO4, KTP) and its isomorphs KTiOAsO4 (KTA) and Rb1%K99%TiOPO4 (RKTP) and introduce a method by which to reduce the overall ionic conductivity in KTP by a potassium nitrate treatment. Furthermore, we create so-called gray tracking in KTP and investigate the ionic conductivity in theses areas. A local unintended reduction of the ionic conductivity is observed in the gray-tracked regions, which also induce additional optical absorption in the material. We show that a thermal treatment in an oxygen-rich atmosphere removes the gray tracking and brings the ionic conductivity as well as the optical transmission back to the original level. These studies can help to choose the best material and treatment for specific applications.


Potassium titanyl phosphate Z- and Y-cut surfaces from density-functional theory

S. Neufeld, A. Bocchini, W.G. Schmidt, Physical Review Materials (2021)



Understanding gray track formation in KTP: $\mathrmTi^3+$ centers studied from first principles

A. Bocchini, C. Eigner, C. Silberhorn, W.G. Schmidt, U. Gerstmann, Phys. Rev. Materials (2020), 4, pp. 124402



Oxygen and potassium vacancies in KTP calculated from first principles

A. Bocchini, S. Neufeld, U. Gerstmann, W.G. Schmidt, Journal of Physics: Condensed Matter (2019), 385401


Potassium titanyl phosphate (KTP) quasiparticle energies and optical response

S. Neufeld, A. Bocchini, U. Gerstmann, A. Schindlmayr, W.G. Schmidt, Journal of Physics: Materials (2019), 2(4), 045003

The KTiOPO4 (KTP) band structure and dielectric function are calculated on various levels of theory starting from density-functional calculations. Within the independent-particle approximation an electronic transport gap of 2.97 eV is obtained that widens to about 5.23 eV when quasiparticle effects are included using the GW approximation. The optical response is shown to be strongly anisotropic due to (i) the slight asymmetry of the TiO6 octahedra in the (001) plane and (ii) their anisotropic distribution along the [001] and [100] directions. In addition, excitonic effects are very important: The solution of the Bethe–Salpeter equation indicates exciton binding energies of the order of 1.5 eV. Calculations that include both quasiparticle and excitonic effects are in good agreement with the measured reflectivity.

Liste im Research Information System öffnen

Die Universität der Informationsgesellschaft