Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Sonniger Start in das neue Semester (April 2023). Bildinformationen anzeigen

Sonniger Start in das neue Semester (April 2023).

Foto: Universität Paderborn, Besim Mazhiqi

Philipp Schütte, M.Sc.

 Philipp Schütte, M.Sc.

Spektral Analysis

Wissenschaftlicher Mitarbeiter

Warburger Str. 100
33098 Paderborn

Liste im Research Information System öffnen


Semiclassical formulae For Wigner distributions

S. Barkhofen, P. Schütte, T. Weich, Journal of Physics A: Mathematical and Theoretical (2022), 55(24), 244007

In this paper we give an overview over some aspects of the modern mathematical theory of Ruelle resonances for chaotic, i.e. uniformly hyperbolic, dynamical systems and their implications in physics. First we recall recent developments in the mathematical theory of resonances, in particular how invariant Ruelle distributions arise as residues of weighted zeta functions. Then we derive a correspondence between weighted and semiclassical zeta functions in the setting of negatively curved surfaces. Combining this with results of Hilgert, Guillarmou and Weich yields a high frequency interpretation of invariant Ruelle distributions as quantum mechanical matrix coefficients in constant negative curvature. We finish by presenting numerical calculations of phase space distributions in the more physical setting of 3-disk scattering systems.


Meromorphic Continuation of Weighted Zeta Functions on Open Hyperbolic Systems

P. Schütte, T. Weich, S. Barkhofen, 2021

In this article we prove meromorphic continuation of weighted zeta functions in the framework of open hyperbolic systems by using the meromorphically continued restricted resolvent of Dyatlov and Guillarmou (2016). We obtain a residue formula proving equality between residues of weighted zetas and invariant Ruelle distributions. We combine this equality with results of Guillarmou, Hilgert and Weich (2021) in order to relate the residues to Patterson-Sullivan distributions. Finally we provide proof-of-principle results concerning the numerical calculation of invariant Ruelle distributions for 3-disc scattering systems.

Resonances and weighted zeta functions for obstacle scattering via smooth models

P. Schütte, T. Weich, B. Delarue, 2021

We consider a geodesic billiard system consisting of a complete Riemannian manifold and an obstacle submanifold with boundary at which the trajectories of the geodesic flow experience specular reflections. We show that if the geodesic billiard system is hyperbolic on its trapped set and the latter is compact and non-grazing the techniques for open hyperbolic systems developed by Dyatlov and Guillarmou can be applied to a smooth model for the discontinuous flow defined by the non-grazing billiard trajectories. This allows us to obtain a meromorphic resolvent for the generator of the billiard flow. As an application we prove a meromorphic continuation of weighted zeta functions together with explicit residue formulae. In particular, our results apply to scattering by convex obstacles in the Euclidean plane.



Liste im Research Information System öffnen

Die Universität der Informationsgesellschaft