Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Perspektivenwechsel. Bildinformationen anzeigen


Foto: Universität Paderborn

Tobias Gburrek

 Tobias Gburrek

Nachrichtentechnik (NT)

Wissenschaftlicher Mitarbeiter - Forschung & Lehre

+49 5251 60-3624
Pohlweg 47-49
33098 Paderborn

Liste im Research Information System öffnen


Deep Neural Network based Distance Estimation for Geometry Calibration in Acoustic Sensor Network

T. Gburrek, J. Schmalenstroeer, A. Brendel, W. Kellermann, R. Haeb-Umbach, in: European Signal Processing Conference (EUSIPCO), 2020


Unsupervised Learning of a Disentangled Speech Representation for Voice Conversion

T. Gburrek, T. Glarner, J. Ebbers, R. Haeb-Umbach, P. Wagner, in: Proc. 10th ISCA Speech Synthesis Workshop, 2019, pp. 81-86

This paper presents an approach to voice conversion, whichdoes neither require parallel data nor speaker or phone labels fortraining. It can convert between speakers which are not in thetraining set by employing the previously proposed concept of afactorized hierarchical variational autoencoder. Here, linguisticand speaker induced variations are separated upon the notionthat content induced variations change at a much shorter timescale, i.e., at the segment level, than speaker induced variations,which vary at the longer utterance level. In this contribution wepropose to employ convolutional instead of recurrent networklayers in the encoder and decoder blocks, which is shown toachieve better phone recognition accuracy on the latent segmentvariables at frame-level due to their better temporal resolution.For voice conversion the mean of the utterance variables is re-placed with the respective estimated mean of the target speaker.The resulting log-mel spectra of the decoder output are used aslocal conditions of a WaveNet which is utilized for synthesis ofthe speech waveforms. Experiments show both good disentan-glement properties of the latent space variables, and good voiceconversion performance.

Liste im Research Information System öffnen

Die Universität der Informationsgesellschaft