Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Perspektivenwechsel. Bildinformationen anzeigen

Perspektivenwechsel.

Foto: Universität Paderborn

Dr.-Ing. Tim Rostek

Kontakt
Publikationen
Dr.-Ing. Tim Rostek

Umformende und Spanende Fertigungstechnik

Oberingenieur - Akademischer Rat

Telefon:
+49 5251 60-5346
Fax:
+49 5251 60-5342
Büro:
IW1.851
Besucher:
Pohlweg 53
33098 Paderborn

Liste im Research Information System öffnen

2021

Cutting Blades for Food Processing Applications Manufactured Using Innovative Spin Forming

T. Rostek, H. Makeieva, W. Homberg, in: ICTP 2021 Proceedings, 2021


2020

Joining with Versatile Friction-Spun Joint Connectors

T. Rostek, E. Wiens, W. Homberg, Procedia Manufacturing (2020), pp. 395-399


2019

Improved set up strategies for steel strip straightening machines

T. Rostek, W. Homberg, in: PROCEEDINGS OF THE 22ND INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2019, 2019


2018


Hybride Verbundstrukturen aus Aluminium und Titan für Leichtbauanwendungen

W. Homberg, T. Rostek, M. Schaper, O. Grydin, A. Andreiev, A. Brosius, C. Guilleaume, 2018


Optimization of Tooling Design for Hot Mandrel Bending of Pipe Elbows

U. Diekmann, W. Homberg, J. Prehm, T. Rostek, N. Schönhoff, D. Tabakajew, A. Trasca, H. Uysal, Materials Science Forum (2018), pp. 159-164

<jats:p>This paper presents the finite element model developed for the simulation of pipe elbow production by the so-called ‘Hamburg process’ in order to improve productivity and resource efficiency. To optimize the tooling design, a sensitivity analysis of the tool parameters that influence the quality of pipe elbows, such as mandrel height and length, is conducted. Different materials data sets including damage models were considered. Using numerical simulations, it is possible to determine an optimized tool geometry for the production of specific pipe elbow dimensions. Furthermore, as a result of the experiments and numerical simulations conducted, it is possible to increase the production velocity of the serial plant. Along with deformation, damage models are included in simulations in order to identify the right process boundaries. Finally, an experimentally validated model is developed for increasing resource efficiency in pipe elbow fabrication.</jats:p>


    2017

    Locally Graded Steel Materials for Self-Sharpening Cutting Blades

    T. Rostek, W. Homberg, Procedia Engineering (2017), pp. 2185-2190


    Development of hybrid directionally reinforced structural parts for lightweight applications

    W. Homberg, T. Rostek, M. Schaper, O. Grydin, A. Andreiev, A. Brosius, M. Tulke, 2017


    2016

    Layered Steel Materials for the Manufacture of Self-Sharpening Cutting Blades

    T. Rostek, W. Homberg, International Journal of Material Forming (2016)


    2015

    Internal Flow-Turning - An Innovative Technology for the Manufacture of Tailored Tubes

    W. Homberg, T. Rostek, E. Wiens, Key Engineering Materials (2015), pp. 65-70

    <jats:p>In order to optimise the material utilisation and improve the lightweight design of automotive parts tailored hollow profiles are needed, especially as semi-finished parts for hydroforming. Internal Flow-Turning is an innovative incremental forming technology which enables the manufacture of tubes featuring a varying wall thickness and a constant outer diameter. These characteristics facilitate the material feed at hydroforming processes significantly. In addition, the spinning-related forming technology improves the mechanical material properties, shape and dimensional accuracy, and the surface quality of parts produced.</jats:p>



      Ein Beitrag zur Verarbeitung von Dickblech aus utlrahochfesten Stahlwerkstoffen

      T. Rostek, Shaker Verlag, 2015

      Die Fertigung von innovativen Bauteilen aus ultrahochfesten Stählen erfordert oft Wärmebehandlungen zur Einstellung höchster mechanischer Festigkeiten. Bei Einsatz dickwandiger Halbzeuge mit entsprechend hoher Wärmekapazität eignen sich konventionelle Wärmebehandlungstechnologien und -prozessführungen jedoch nur eingeschränkt für einen effizienten Herstellungsprozess. Inhalt dieser Arbeit sind daher innovative Fertigungsstrategien, welche die wirtschaftliche Herstellung entsprechender Bauteile vor dem Hintergrund einer effektiven Formgebung sowie einer anforderungsangepassten Werkstoffbehandlung zum Ziel haben. Spezielle Temperaturführungsstrategien als auch thermomechanische Herangehensweisen zum Einstellen besonders günstiger mechanischer Eigenschaften entsprechender Stahlwerkstoffe stellen in diesem Kontext vielversprechende Ansatzpunkte dar.


        2013

        Thermo-Mechanical Hardening of Ultra High-Strength Steels

        W. Homberg, T. Rostek, Key Engineering Materials (2013), pp. 133-140

        <jats:p>nnovative ultra high-strength steels have excellent mechanical properties which commonly relate to the materials martensitic microstructure. As thermal heat treatments are state-of-the-art for obtaining the desired microstructure, innovative thermo-mechanical treatments are likely to give rise to even better material qualities. This article highlights various aspects of innovative thermo-mechanical hardening strategies for the processing of ultra high-strength steels, involving both press hardening and friction spinning operations.</jats:p>



          Hochleistungsaktivelemente für landwirtschaftliche Maschinen aus ultrahochfestem Stahl

          W. Homberg, T. Rostek, Verlag und Vertriebsgesellschaft mbH, 2013


          2012

          Presshärten von Rohren und Profilen mittels formlos festen Stoffen

          A.E. Tekkaya, T. Mennecart, J. Witulski, W. Homberg, T. Rostek, Verlag und Vertriebsgesellschaft mbH, 2012


          2011

          Presshärten von Rohren und Profilen mittels formlos fester Stoffe

          T. Mennecart, T. Rostek, J. Witulski, A. Brosius, A.E. Takkaya, W. Homberg, Meisenbach, 2011


          High Performance Active Elements for Agricultural Machines Made of Ultra High-Strength Steels

          W. Homberg, T. Rostek, in: Proceedings. of the 10th International Conference on Technology of Plasticity (ICTP), Springer, 2011


          High Performance Active Elements for Agricultural Machines Made of Ultra High-Strength Steels

          W. Homberg, T. Rostek, Key Engineering Materials (2011), pp. 229-234

          <jats:p>This article will highlight various aspects of the production process of high performance active elements made of ultra high-strength steels. Focus is put on the processing of thick sheet metal regarding hot forming by means of punching, embossing, and forging processes as well as on thermo-mechanical treatment. Due to the material thickness of the semi-finished parts/blanks used and owing to the high strength of the materials (Rm &gt; 2600 MPa) current production techniques and parameters from the field of thin sheet metal can only be limitedly be transferred and have therefore been specially investigated for this application.</jats:p>


            2009

            Incremental forming of tubes and sheets assisted by friction-induced heating

            W. Homberg, D. Hornjak, C. Beerwald, T. Rostek, J. Kunert, D.. Wilk, Auerbach, 2009


            Liste im Research Information System öffnen

            Die Universität der Informationsgesellschaft