Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Sonniger Start in das neue Semester (April 2023). Bildinformationen anzeigen

Sonniger Start in das neue Semester (April 2023).

Foto: Universität Paderborn, Besim Mazhiqi

Roland Unruh

Kontakt
Publikationen
 Roland Unruh

Leistungselektronik und Elektrische Antriebstechnik (LEA)

Wissenschaftlicher Mitarbeiter - Modulare AC-DC Umrichter zur Anwendung in der Wasserstoff-Elektrolyse

Telefon:
+49 5251 60-3492
Fax:
+49 5251 60-3443
Büro:
E4.113
Sprechzeiten:

nach Absprache per E-Mail

 

Web:
Besucher:
Pohlweg 55
33098 Paderborn

Liste im Research Information System öffnen

2022

Zero-Sequence Voltage Reduces DC-Link Capacitor Demand in Cascaded H-Bridge Converters for Large-Scale Electrolyzers by 40%

R. Unruh, F. Schafmeister, J. Böcker, in: 24th European Conference on Power Electronics and Applications (EPE'22 ECCE Europe), IEEE, 2022

Cascaded H-bridge Converters (CHBs) are a promising solution in converting power from a three-phase medium voltage of 6.6 kV...30 kV to a lower DC-voltage in the range of 100 V...1 kV to provide pure DC power to applications such as electrolyzers for hydrogen generation, data centers with a DC power distribution and DC microgrids. CHBs can be interpreted as modular multilevel converters with an isolated DC-DC output stage per module, require a large DC-link capacitor for each module to handle the second harmonic voltage ripple caused by the fluctuating input power within a fundamental grid period. Without a zero-sequence voltage injection, star-connected CHBs are operated with approximately sinusoidal arm voltages and currents. The floating star point potential enables to utilize different zero-sequence voltage injection techniques such as a third-harmonic injection with 1/6 of the grid voltage amplitude or a Min-Max voltage injection. Both well-known methods have the advantage to reduce the peak arm voltage and thereby the number of required modules by 13.4 % (to √ 3 2). This paper proves analytically that the third-harmonic injection with 1/6 of the grid voltage amplitude reduces the second harmonic voltage ripple by only 15.1 % compared to no-voltage injection for unity power factor operation and balanced grid voltages. Then it is shown, that the Min-Max injection has the often overlooked advantage of reducing the second harmonic voltage ripple by even 18.8 %. By applying the here proposed zero-sequence voltage injection in saturation modulation, the second harmonic voltage ripple of the DC-link capacitors is reduced by even 24.3 %, while still requiring the same number of modules as the Min-Max injection. For a realistic number of reserve modules, the overall energy ripple in the DC-link capacitors is reduced by 40 %.


2021

Adaptive Zero-Sequence Voltage Injection for Modular Solid-State Transformer to Compensate for Asymmetrical Fault Conditions

R. Unruh, J. Lange, F. Schafmeister, J. Böcker, in: 23rd European Conference on Power Electronics and Applications (EPE'21 ECCE Europe), IEEE, 2021

Modular solid-state transformers (SSTs) are a promising technology in converting power from a 10kV three-phase medium voltage to a lower DC-voltage in the range of 100…400V to provide pure DC power to applications such as electrolyzers for hydrogen generation, data centers with a DC power distribution and DC micro grids. Modular SSTs which can be interpreted as modular multilevel converters with an isolated DC-DC output stage per module, are designed with redundant modules to increase reliability. Usually, each of the three arms operates independently, and therefore, only a fixed number of faulty modules can be compensated in each arm, even if all modules are operational in the remaining two arms. With the proposed zero-sequence voltage injection, up to 100% more faulty modules can be compensated in an arm by employing the same hardware. In addition, module power imbalances are nearly eliminated by utilizing a fundamental frequency zero-sequence voltage. A dominant 3rd harmonic zero-sequence voltage injection in combination with the 5th, 7th and several higher order harmonics with adaptive (small) amplitudes minimize the required arm voltages at steady-state. For nominal operation or symmetrical faults, the proposed technique is equivalent to the well known Min-Max voltage injection, which already reduces the peak arm voltage by 13.4% compared to a constant star point potential. A statistical analysis proves, that the expected number of tolerable faulty modules of the 1MW SST increases by 12% without the need for additional hardware.


Frequency-Doubler Modulation for Reduced Junction Temperatures for LLC Resonant Converters Operated in Half-Bridge Configuration

P. Rehlaender, R. Unruh, L. Hankeln, F. Schafmeister, J. Böcker, in: 23rd European Conference on Power Electronics and Applications (EPE'21 ECCE Europe), IEEE, 2021

LLC resonant converters are typically unsuitable to be applied for wide voltage-transfer ratio applications. With a full-bridge inverter, however, they can be operated in a variety of different modulations. Most notably, by permanently turning on one MOSFET and turning off the other MOSFET of the same bridge leg, the LLC can be operated in half-bridge configuration reducing the gain by a factor of two. The resonant capacitor is hereby charged to an average voltage of half the input voltage. In this modulation, however, the switch that is permanently turned on is stressed by the complete resonant current while exhibiting no switching losses. This paper proves that the frequency-doubler modulation can better balance the losses among all MOSFETs and should be the preferred mode of operation favored over the conventional half-bridge modulation. This paper analyzes the beneficial loss distribution, proposes an on-the-fly morphing modulation and discusses potential operating strategies to further reduce the junction temperature. Furthermore, it is shown that this modulation can also be altered to achieve the asymmetrical LLC operation. Experimental measurement results show that the modulation results in a substantial decrease of the maximum MOSFET temperature and shows that the converter can be smoothly transitioned during operation from full-bridge modulation to the frequency-doubler half-bridge operation and back.


Alternating Asymmetrical Phase-Shift Modulation for Full-Bridge Converters with Balanced Switching Losses to Reduce Thermal Imbalances

P. Rehlaender, R. Unruh, F. Schafmeister, J. Böcker, in: 2021 IEEE Applied Power Electronics Conference and Exposition (APEC), IEEE, 2021

Phase-shift modulated full bridge converters suffer from thermal imbalances of the inverter switches. The lagging leg switches are subject to larger commutation currents compared to those of the leading leg as the transformer current reduces in the freewheeling interval. Furthermore, after this interval, the energy in the series inductance may not be large enough to achieve zero-voltage switching (ZVS) for the leading leg. Both effects result in thermal imbalances. This paper analyzes the alternating-asymmetrical phase-shift modulation to achieve balanced conduction and switching losses for all four switches while showing that this modulation is easily implemented on standard DSPs. The modulation has been implemented to LLC converters where experimental measurement results proved its effectiveness for LLC converters by reducing the temperature deviation from 6.3 K to only 0.2 K such that the peak temperature is reduced from 95 °C to 92 °C. The paper also proves that the modulation can be utilized to improve the efficiency of LLC converters operated at very low gains while simultaneously reducing the junction temperature of all four switches compared to the conventional complementary modulation. Finally, EMI implications are analyzed, which show that the modulation may be beneficial for reducing the common-mode emissions around the operating frequency.


2020

Evaluation of MMCs for High-Power Low-Voltage DC-Applications in Combination with the Module LLC-Design

R. Unruh, F. Schafmeister, J. Böcker, in: 2020 22nd European Conference on Power Electronics and Applications (EPE'20 ECCE Europe), IEEE, 2020

In this paper, a full-bridge modular multilevel converter (MMC) and two half-bridge-based MMCs are evaluated for high-current low-voltage e.g. 100 - 400V DC-applications such as electrolysis, arc welding or datacenters with DC-power distribution. Usually, modular multilevel converters are used in high-voltage DC-applications (HVDC) in the multiple kV-range, but to meet the needs of a high-current demand at low output voltage levels, the modular converter concept requires adaptations. In the proposed concept, the MMC is used to step-down the three-phase medium-voltage of 10kV, and provide up to 1 MW to the load. Therefore, each module is extended by an LLC resonant converter to adapt to the specific electrolyzers DC-voltage range of 142 - 220V and to provide galvanic isolation. The six-arm MMC converter with half-bridge modules can be simplified and optimized by removing three arms, and thus halving the number of modules. In addition, the module voltage ripple and capacitor losses are decreased by 22% and 30% respectively. By rearranging the components of the half-bridge MMC to build a MMC consisting of grid-side full-bridge modules, the voltage ripple is further reduced by 78% and capacitor losses by 64%, while ensuring identical costs and volume for all MMCs. Finally, the LLC resonant converter is designed for the most efficient full-bridge MMC. The LLC can not operate at resonance with a fixed nominal module voltage of 770V because the output voltage is varying between 142 - 220V. By decreasing the module voltage down to 600V, additional points of operation can be operated in resonance, and the remaining are closer to resonance. The option to decrease the module voltage down to 600V, increases the number of required modules per arm from 12 to 15, which requires to balance the losses of the LLCs and the grid-side stages.


1-MW Full-Bridge MMC for High-Current Low-Voltage (100V-400V) DC-Applications

R. Unruh, F. Schafmeister, N. Fröhleke, J. Böcker, in: PCIM Europe digital days 2020; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, VDE, 2020

A full-bridge modular multilevel converter (MMC) is compared to a half-bridge-based MMC for high-current low-voltage DC-applications such as electrolysis, arc welding or datacenters with DC-power distribution. Usually, modular multilevel converters are used in high-voltage DC-applications (HVDC) in the multiple kV-range, but to meet the needs of a high-current demand at low output voltage levels, the modular converter concept requires adaptations. In the proposed concept, the MMC is used to step-down the three-phase medium-voltage of 10 kV. Therefore, each module is extended by an LLC resonant converter to adapt to the specific electrolyzers DC-voltage range of 142-220V and to provide galvanic isolation. The proposed MMC converter with full-bridge modules uses half the number of modules compared to a half-bridge-based MMC while reducing the voltage ripple by 78% and capacitor losses by 64% by rearranging the same components to ensure identical costs and volume. For additional reliability, a new robust algorithm for balancing conduction losses during the bypass phase is presented.


11kW, 70kHz LLC Converter Design with Adaptive Input Voltage for 98% Efficiency in an MMC

R. Unruh, F. Schafmeister, J. Böcker, in: 2020 IEEE 21st Workshop on Control and Modeling for Power Electronics (COMPEL), IEEE, 2020

Although there are numerous design methodologies for the LLC resonant converter, they often do not consider the possibility of input voltage adjustment. In the proposed concept, a modular multi-level converter (MMC) is used to step-down the three-phase medium voltage of 10 kV, and provide up to 1 MW of pure DC power to the load consisting of electrolyzers for hydrogen generation. Therefore, each module is extended by an LLC resonant converter to adapt to the specific electrolyzers DC voltage range of 142...220 V and to provide galvanic isolation. In order to achieve a high efficiency for a wide range of load conditions, the input voltage of the LLC converter is adjusted between 600 V and 770 V while operating at resonance or close to resonance. The parameters of the 11kW LLC resonant converter with an integrated leakage inductance are systematically optimized to maximize the efficiency for all loads while achieving zero-voltage switching. For a fast estimation of eddy current losses, a new method is proposed, which uses a single FEM simulation to fit newly developed loss equations. The calculated average efficiency is 97.8%. The prototype of the LLC converter reaches a peak efficiency of over 98% at resonance at half load which is similar to the precalculated value.


2019

MMC-Topology for High-Current and Low-Voltage Applications with Minimal Number of Submodules, Reduced Switching and Capacitor Losses

R. Unruh, F. Schafmeister, N. Fröhleke, J. Böcker, in: PCIM Europe 2019; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management, VDE, 2019

Due to recent developments in MMCs, they are used in many medium-voltage and high-power applications today, but efficient and modular solutions for high-power at low-voltage such as for electrolysis are still required. The proposed Y-MMC converts the grid AC-voltage into a DC-voltages, and an LLC converter is connected to each submodule capacitor to provide the required current to the DC-load. This paper proposes a topology that uses only half the number of submodules and moreover to reduce the effective switching frequency by a third, while preserving the same THD und output power of an YY-MMC.


Liste im Research Information System öffnen

Die Universität der Informationsgesellschaft