Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Schnee auf dem Campus. Bildinformationen anzeigen

Schnee auf dem Campus.

Foto: Universität Paderborn, Johannes Pauly

Alexander Sprenger, M.Sc.

 Alexander Sprenger, M.Sc.

Datentechnik (DATE)

Mitglied - Doktorand - Forschung, Lehre

+49 5251 60-3923
+49 5251 60-4221

nach Vereinbarung

Pohlweg 47-49
33098 Paderborn

Studienberatung Elektrotechnik (Studi.ET)

Mitglied - Mitarbeiter - Fachstudienberater Computer Engineering (ab 01.11.2020)

+49 5251 60-3202
+49 5251 60-3873
Pohlweg 47-49
33098 Paderborn

Liste im Research Information System öffnen


Variation-Aware Test for Logic Interconnects using Neural Networks - A Case Study

A. Sprenger, S. Sadeghi-Kohan, J.D. Reimer, S. Hellebrand, in: IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT’20), October 2020, 2020

Logic Fault Diagnosis of Hidden Delay Defects

S. Holst, M. Kampmann, A. Sprenger, J.D. Reimer, S. Hellebrand, H. Wunderlich, X. Weng, in: IEEE International Test Conference (ITC'20), November 2020, 2020


A Hybrid Space Compactor for Varying X-Rates

M.U. Maaz, A. Sprenger, S. Hellebrand, 31. Workshop "Testmethoden und Zuverlässigkeit von Schaltungen und Systemen" (TuZ'19), 2019

Divide and Compact - Stochastic Space Compaction for Faster-than-At-Speed Test

A. Sprenger, S. Hellebrand, Journal of Circuits, Systems and Computers (2019), 28(1), pp. 1-23

A Hybrid Space Compactor for Adaptive X-Handling

M.U. Maaz, A. Sprenger, S. Hellebrand, in: 50th IEEE International Test Conference (ITC), IEEE, 2019, pp. 1-8

The test for small delay faults is of major importance for predicting potential early life failures or wearout problems. Typically, a faster-than-at-speed test (FAST) with sev¬eral different frequencies is used to detect also hidden small delays, which can only be propagated over short paths. But then the outputs at the end of long paths may no longer reach their stable values at the nominal observation time and must be considered as unknown (X-values). Thus, test response compaction for FAST must be extremely flexible to cope with high X-rates, which also vary with the test frequencies. Stochastic compaction introduced by Mitra et al. is controlled by weighted pseudo-random signals allowing for easy adaptation to varying conditions. As demonstrated in previous work, the pseudo-random control can be optimized for high fault efficiency or X-reduction, but a given target in fault efficiency cannot be guaranteed. To close this gap, a hybrid space compactor is introduced in this paper. It is based on the observation that many faults are lost in the compaction of relatively few critical test patterns. For these critical patterns a deterministic compaction phase is added to the test, where the existing compactor structure is re-used, but controlled by specifically determined control vectors.


    Stochastische Kompaktierung für den Hochgeschwindigkeitstest

    A. Sprenger, S. Hellebrand, 30. Workshop "Testmethoden und Zuverlässigkeit von Schaltungen und Systemen" (TuZ'18), 2018

    Tuning Stochastic Space Compaction to Faster-than-at-Speed Test

    A. Sprenger, S. Hellebrand, in: 2018 IEEE 21st International Symposium on Design and Diagnostics of Electronic Circuits & Systems (DDECS), IEEE, 2018

    Liste im Research Information System öffnen

    Die Universität der Informationsgesellschaft