Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Change of Perspective. Show image information

Change of Perspective.

Photo: Paderborn University

Prof. Dr.-Ing. Gerson Meschut

Contact
Publications
Prof. Dr.-Ing. Gerson Meschut

Werkstoff- und Fügetechnik

Head - Professor - Head of institute

Institut für Leichtbau mit Hybridsystemen (ILH)

Committee - Professor - Vorstand ILH

Phone:
+49 5251 60-3031
Fax:
+49 5251 60-3239
Office:
P1.4.11.1
Visitor:
Pohlweg 47-49
33098 Paderborn

Transregional Collaborative Research Centre 285

Speaker - Professor - Teilprojekte A01, C02, Z

Phone:
+49 5251/ 60 3030

Open list in Research Information System

2021

Methodenentwicklung zur Langzeitprognose von Klebverbindungen bei kombinierter Temperatur- und Medieneinwirkung

S. Sander, D. Teutenberg, G. Meschut, A. Matzenmiller, in: 21. Kolloquium Gemeinsame Forschung in der Klebtechnik, 2021


Clinching of Thermoplastic Composites and Metals—A Comparison of Three Novel Joining Technologies

B. Gröger, J. Troschitz, J. Vorderbrüggen, C. Vogel, R. Kupfer, G. Meschut, M. Gude, Materials (2021)



A method for three-dimensional modelling of the shear-clinching process

D. Han, C. Yang, G. Meschut, ESAFORM 2021 (2021)

<jats:p>Three-dimensional modelling enables to determine the in-plane material flow in asymmetrical situation. Thus, the distortion of the sheets to be joined can be characterized more exactly. This study shows a method for building up a three-dimensional shear-clinching framework without damage criteria. In fact, the die-sided sheet in shear-clinching was designed as a pre-punched sheet and slugs. The material separation in the die-sided joining partner, which in two-dimensional simulation is often described by macro- and micromechanical fracture criteria, was realised in this study based on a defined contact condition. By means of a shear-cutting simulation, a correlation between the break angle and the separation stress was determined, which was used as a separation criterion in the shear-clinching simulation. The separation line was confirmed using post-particles. To validate this model, the results of the simulation using a quadratic single-point specimen were compared to the experiments with respect to the distortion of the joining partner. In general, the built three-dimensional framework provides for further tool developments with regard to the reduction of distortion in shear-clinching.</jats:p>


    Joining suitability of cast aluminium for self-piercing riveting

    M. Neuser, F. Kappe, M. Busch, O. Grydin, M. Bobbert, M. Schaper, G. Meschut, T. Hausotte, 2021



    Modeling of Stiffness Anisotropy in Simulation of Self-Piercing Riveted Components

    M. Otroshi, G. Meschut, C.R. Bielak, L. Masendorf, A. Esderts, Key Engineering Materials (2021), 883, pp. 35-40


    Strength of self-piercing riveted Joints with conventional Rivets and Rivets made of High Nitrogen Steel

    B. Uhe, C. Kuball, M. Merklein, G. Meschut, 2021

    The use of high-strength steel and aluminium is rising due to the intensified efforts being made in lightweight design, and self-piercing riveting is becoming increasingly important. Conventional rivets for self-piercing riveting differ in their geometry, the material used, the condition of the material and the coating. To shorten the manufacturing process, the use of stainless steel with high strain hardening as the rivet material represents a promising approach. This allows the coating of the rivets to be omitted due to the corrosion resistance of the material and, since the strength of the stainless steel is achieved by cold forming, heat treatment is no longer required. In addition, it is possible to adjust the local strength within the rivet. Because of that, the authors have elaborated a concept for using high nitrogen steel 1.3815 as the rivet material. The present investigation focusses on the joint strength in order to evaluate the capability of rivets in high nitrogen steel by comparison to conventional rivets made of treatable steel. Due to certain challenges in the forming process of the high nitrogen steel rivets, deviations result from the targeted rivet geometry. Mainly these deviations cause a lower joint strength with these rivets, which is, however, adequate. All in all, the capability of the new rivet is proven by the results of this investigation.


      Joining of press-hardened profiles for the mixed-intensive lightweight structural design in electric vehicles

      D. Rotzsche, G. Meschut, D. Fuss, M. Bangel, M. Uffelmann, K. Werner, N. Oleff, H. Günter, in: Joining in Car Body Engineering 2021, 2021


      Influence of various procedures for the determination of flow curves on the predictive accuracy of numerical simulations for mechanical joining processes

      M. Böhnke, F. Kappe, M. Bobbert, G. Meschut, Materials Testing (2021), 63(6), pp. 493-500

      The predictive quality of numerical simulations for mechanical joining processes depends on the implemented material model, especially regarding the plasticity of the joining parts. Therefore, experimental material characterization processes are conducted to determine the material properties of sheet metal and generate flow curves. In this regard, there are a number of procedures which are accompanied by varying experimental efforts. This paper presents various methods of determining flow curves for HCT590X as well as EN AW-6014, including varying specimen geometries and diverse hardening laws for extrapolation procedures. The flow curves thus generated are compared considering the variety of plastic strains occurring in mechanical joining processes. The material data generated are implemented in simulation models for the joining technologies, clinching and self-piercing riveting. The influence of the varied methods on the predictive accuracy of the simulation model is analysed. The evaluation of the differing flow curves is achieved by comparing the geometric formation of the joints and the required joining forces of the processes with experimentally investigated joints.


        Analyse des Versagensverhaltens geklebter Stahl Verbindungen beim werkstoffschonenden Entfügen in der Karosserieinstandsetzung

        N. Chudalla, G. Meschut, A. Bartley, T.M. Wibbeke. Analyse des Versagensverhaltens geklebter Stahl Verbindungen beim werkstoffschonenden Entfügen in der Karosserieinstandsetzung. 2021.


        Experimental failure analysis of adhesively bonded steel/CFRP joints under quasi-static and cyclic tensile-shear and peel loading

        J. Kowatz, D. Teutenberg, G. Meschut, International Journal of Adhesion and Adhesives (2021)



        Mechanical joining of glass fibre reinforced polymer (GFRP) through an innovative solid self-piercing rivet

        D. Han, K. Yang, G. Meschut, Journal of Materials Processing Technology (2021)


        Development of a Method for the Identification of Friction Coefficients in Sheet Metal Materials for the Numerical Simulation of Clinching Processes

        M.S. Rossel, M. Böhnke, C.R. Bielak, M. Bobbert, G. Meschut, in: Sheet Metal 2021, Trans Tech Publications Ltd, 2021, pp. 81-88

        In order to reduce the fuel consumption and consequently the greenhouse emissions, the automotive industry is implementing lightweight constructions in the body in white production. As a result, the use of aluminum alloys is continuously increasing. Due to poor weldability of aluminum in combination with other materials, mechanical joining technologies like clinching are increasingly used. In order to predict relevant characteristics of clinched joints and to ensure the reliability of the process, it is simulated numerically during product development processes. In this regard the predictive accuracy of the simulated process highly depends on the implemented friction model. In particular, the frictional behavior between the sheet metals affects the geometrical formation of the clinched joint significantly. This paper presents a testing method, which enables to determine the frictional coefficients between sheet metal materials for the simulation of clinching processes. For this purpose, the correlation of interface pressure and the relative velocity between aluminum sheets in clinching processes is investigated using numerical simulation. Furthermore, the developed testing method focuses on the specimen geometry as well as the reproduction of the occurring friction conditions between two sheet metal materials in clinching processes. Based on a methodical approach the test setup is explained and the functionality of the method is proven by experimental tests using sheet metal material EN AW6014.


          Development of an adaptive, sensor-based FDS-robot-system

          M. Ivanjko, R. Beck, G. Meschut, J. Zweck, T. Richter, 2021


          Reduzierung der Flanschbreiten beim Widerstandspunktschweißen durch Einsatz exzentrischer Elektrodenkappengeometrien

          C. Böhne, G. Tümkaya, G. Meschut. Reduzierung der Flanschbreiten beim Widerstandspunktschweißen durch Einsatz exzentrischer Elektrodenkappengeometrien. 2021.


          Robotergestütztes manuelles mechanisches Fügen – RoboterFügen

          S. Neumann, G. Meschut, F. Schmatz, W. Flügge, 2021



          Service life estimation of self‐piercing riveted joints by linear damage accumulation

          L. Masendorf, M. Wächter, A. Esderts, M. Otroshi, G. Meschut, Fatigue & Fracture of Engineering Materials & Structures (2021), pp. 15



          Joining of ultra-high-strength steels using resistance element welding on conventional resistance spot welding guns

          H. Günter, G. Meschut, Welding in the World (2021)


          Intrinsische Hybridverbunde für Leichtbautragstrukturen

          S. Sander, M. Bobbert, G. Meschut, Springer Vieweg, 2021, pp. 332




          Methodenentwicklung zur Versagensanalyse aufgrund der Aushärtung vorgeschädigter Klebverbindungen in stahlintensiven Mischbaustrukturen

          F. Beule, D. Teutenberg, G. Meschut, T. Aubel, A. Matzenmiller. Methodenentwicklung zur Versagensanalyse aufgrund der Aushärtung vorgeschädigter Klebverbindungen in stahlintensiven Mischbaustrukturen. 2021.


          Joining of press-hardened profiles for the mixed-intensive lightweight structural design in electric vehicles

          H. Günter, G. Meschut, D. Fuss, K. Werner, M. Bangel, D. Rotzsche, M. Uffelmann, N. Oleff, in: Joining in Car Body Engineering 2021, 2021



          Influence of the Rivet Coating on the Friction during Self-Piercing Riveting

          B. Uhe, C. Kuball, M. Merklein, G. Meschut, Key Engineering Materials (2021), 883, pp. 11-18

          The number of multi-material joints is increasing as a result of lightweight design. Self-piercing riveting (SPR) is an important mechanical joining technique for multi-material structures. Rivets for SPR are coated to prevent corrosion, but this coating also influences the friction that prevails during the joining process. The aim of the present investigation is to evaluate this influence. The investigation focuses on the common rivet coatings Almac® and zinc-nickel with topcoat as well as on uncoated rivet surfaces. First of all, the coating thickness and the uniformity of the coating distribution are analysed. Friction tests facilitate the classification of the surface properties. The influence of the friction on the characteristic joint parameters and the force-stroke curves is analysed by means of experimental joining tests. More in-depth knowledge of the effects that occur is achieved through the use of numerical simulation. Overall, it is shown that the surface condition of the rivet has an impact on the friction during the joining process and on the resulting joint. However, the detected deviations between different surface conditions do not restrict the operational capability of SPR and the properties of uncoated rivet surfaces, in particular, are similar to those of Almac®-coated rivets. It can thus be assumed that SPR with respect to the joining process is also possible without rivet coating in principle.




            2020

            Berücksichtigung der Herstellungshistorie von Blechbauteilen beim Fügen durch Umformen

            S. Wiesenmayer, P. Heyser, T. Nehls, P. Frey, W. Flügge, G. Meschut, M. Merklein, Werkstattstechnik Online (2020), 110(10), pp. 677-683


            Berechnen der Lebensdauer hybrider Verbindungen

            S. Çavdar, G. Meschut, A. Wulf, O. Hesebeck, M. Brede, B. Mayer, K. Tittmann, I. Koch, H. Jäger, J. Wacker, G. Rybar, T. Melz, in: DVS Congress 2020, 2020


            Lokales Konzept zur Auslegung von elastischen Klebverbindungen (LoKAl)

            V. Aßmuth, D. Teutenberg, G. Meschut, J. Philipp, E. Stammen, K. Dilger, in: 20. Kolloquium Gemeinsame Forschung in der Klebtechnik, 2020, pp. 85-87


            Analyse rezepturabhängiger und alterungsbedingter Enthaftungserscheinungen geklebter SMC-Bauteile

            V. Aßmuth, D. Teutenberg, G. Meschut, DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V., 2020, pp. 109


            Lebensdauerberechnung hybrider Verbindungen

            S. Çavdar, D. Teutenberg, G. Meschut, A. Wulf, O. Hesebeck, M. Brede, B. Mayer, K. Tittmann, I. Koch, H. Jäger, J. Wacker, G. Rybar, T. Melz, in: 20. Kolloquium Gemeinsame Forschung in der Klebtechnik, 2020


            Methodenentwicklung zur Schädigungsmodellierung für die numerische Prozesssimulation mechanischer Fügeverfahren

            M. Otroshi, G. Meschut, Europäische Forschungsgesellschaft für Blechverarbeitung e.V., 2020

            The body construction is increasingly characterized by the use of different materials in multi-material-design, which has led to the application of a variety of mechanical joining processes. To enhance the mechanical joining processes in their efficiency, numerical simulation can be used as an effective tool to reduce the number of experiments and shorten the product development cycles. In addition to the description of the plasticity, the damage and the failure behavior of material must also be taken into account. In self-pierce riveting simulations, the rivet penetrates perpendicular into the sheet surface and produces a three-dimensional stress state. Hence, it is essential to describe the material failure as a function of a three-dimensional stress state. A simple approach to describe the separation of upper sheet in the simulation of the joining process is based on a geometric separation criterion. Such a criterion is not predictive und cannot be used in case of variations in tool configurations, sheet thickness, and material combinations. In this project, the damage model GISSMO (Generalized Incremental Stress State dependent damage Model) is used to describe the evolution of ductile damage and predict the onset of fracture during the self-piercing riveting and shear-clinching. The stress state during the process simulation is studied and the variety of damage specimens are experimental examined to characterize the failure curves. The failure curves are defined in the GISSMO damage model. To ensure the accuracy of the model, the verification of the model using simulation of damage specimens with damage model is performed. For the validation of model, the simulation of the joining process using the damage model is carried out and the results of simulation and experiment are compared. Furthermore, sensitivity analyses are performed to identify the influences of manufacturing processes, the evaluation method, and the degree of discretization on the damage behavior of material.


              Joining of Thermoplastic Composites with Metals Using Resistance Element Welding

              J. Troschitz, J. Vorderbrüggen, R. Kupfer, M. Gude, G. Meschut. Joining of Thermoplastic Composites with Metals Using Resistance Element Welding. 2020.



              Improvement of a rivet geometry for the self-piercing riveting of high-strength steel and multi-material joints

              B. Uhe, C. Kuball, M. Merklein, G. Meschut, Production Engineering (2020), 14, pp. 417-423

              As a result of lightweight design, increased use is being made of high-strength steel and aluminium in car bodies. Self-piercing riveting is an established technique for joining these materials. The dissimilar properties of the two materials have led to a number of different rivet geometries in the past. Each rivet geometry fulfils the requirements of the materials within a limited range. In the present investigation, an improved rivet geometry is developed, which permits the reliable joining of two material combinations that could only be joined by two different rivet geometries up until now. Material combination 1 consists of high-strength steel on both sides, while material combination 2 comprises aluminium on the punch side and high-strength steel on the die side. The material flow and the stress and strain conditions prevailing during the joining process are analysed by means of numerical simulation. The rivet geometry is then improved step-by-step on the basis of this analysis. Finally, the improved rivet geometry is manufactured and the findings of the investigation are verified in experimental joining tests.


                Linear damage accumulation of self-pierce riveted joints

                L. Masendorf, M. Wächter, S. Horstmann, M. Otroshi, A. Esderts, G. Meschut, Deutscher Verband für Materialforschung und -prüfung e.V., 2020

                Joining technology is regarded as a key technology for reducing energy consumption and CO2 imitation as well as the use of innovative materials and development of new, resource-saving products. Punch riveting is a widely used and established joining process in many sectors. The white and brown goods, electrical engineering, construction and, in particular, the automotive industry are some of the sectors mentioned here. Since the design and assessment of punch rivet components with regard to structural durability can only be carried out experimentally using prototypes due to a lack of experience and calculation concepts, the improvement of this uneconomical and time-consuming procedure is the goal of this contribution. Therefore, a numerical simulation and design method for cyclically loads punched riveted joints shall be introduced. This concept shall be based on the notch strain concept. The following steps are necessary to achieve the goal shown above: Tensile tests on all materials involved in the joint for determination of tensile strength and quasi-static stress-strain curves Estimation of the cyclic material properties from the tensile strength in order to obtain the strain-life curve and the cyclic stress-strain curve Estimation of mean stress sensitivity from the tensile strength to conduct an amplitude transformation for variable amplitude loadings. Execution of a 2D forming simulation of the joining process to determine the geometry and the stresses and degrees of deformation present in the connection Transferring the results of the forming simulation into a static-mechanical load simulation for determining the relation between the external load and the elastic-plastic strain at the critical point Estimation of the service life by means of the damage parameter Wöhler curves calculated from the strain-life curve In order to verify the simulation and calculation method, service life investigations have been carried out on punched riveted components under constant and variable amplitude load. The test results, as well as the workflow through the fatigue assessment and its accuracy in estimation the fatigue life will be shown in this contribution.


                  Increased load bearing capacity of mechanically joined FRP/metal joints using a pin structured auxiliary joining element

                  P. Heyser, V. Sartisson, G. Meschut, M. Droß, K. Dröder, Materials Testing (2020), pp. 55-60




                  Fatigue life prediction of adhesively bonded FRP-aluminium-joints with hyperelastic behavior under cyclic multiaxial stress state

                  S. Çavdar, G. Meschut, A. Wulf, O. Hesebeck, M. Brede, B. Mayer, in: Joining in Car Body Engineering 2020, 2020


                  Analyse rezepturabhängiger und alterungsbedingter Enthaftungserscheinungen geklebter SMC-Bauteile

                  V. Aßmuth, D. Teutenberg, G. Meschut, in: 10. Doktorandenseminar Klebtechnik, DVS Media GmbH, 2020



                  Simple Determination of Fast Curing Parameters for Bonded Structures

                  J. Ditter, T. Aubel, G. Meschut, adhesion ADHESIVES + SEALANTS (2020)(1)




                  FOREL-Wegweiser: Handlungsempfehlungen für den ressourceneffizienten Leichtbau

                  J. Göddecke, G. Meschut, M. Gude, H. Lieberwirth, E. Tekkaya, M. Zaeh, M. Stegelmann, M. Müller, K. Böhme, T. Krampitz, M. Zöllner, M. Hahn, F. Schmitz, A. Hofer, S. Grohmann, Plattform FOREL, 2020, pp. 82


                  Offenzeit plasmaaktivierter Polymeroberflächen für robuste klebtechnische Prozesse – OffPlas

                  V. Aßmuth, D. Teutenberg, G. Meschut, S. Stepanov, A. Stalling, J. Ihde, B. Mayer, in: 20. Kolloquium Gemeinsame Forschung in der Klebtechnik, 2020, pp. 97-98


                  Aktivieren für robuste Klebprozesse - Wie lange sind plasmaaktivierte Polymeroberflächen offen?

                  V. Aßmuth, D. Teutenberg, G. Meschut, S. Stepanov, J. Ihde, B. Mayer, Plastverarbeiter (2020), 71(11), pp. 22-25



                  Numerical analysis of the robustness of clinching process considering the pre-forming of the parts

                  C.R. Bielak, M. Böhnke, R. Beck, M. Bobbert, G. Meschut, Journal of Advanced Joining Processes. (2020)


                  Simulationsbasierte Betriebsfestigkeitsanalyse stanzgenieteter Bauteile

                  M. Otroshi, G. Meschut, L. Masendorf, A. Esderts, Europäische Forschungsgesellschaft für Blechverarbeitung e.V. (EFB), 2020

                  In modern lightweight designs, it is important to find a compromise between the strength and the weight of the construction detail. Hence, hybrid structures made of aluminum and steel materials are increasingly being used in automotive applications. Due to limitations in the quality of resistance spot welding, self-piercing riveting can be used as an alternative process to join sheets from different material groups. The aim of this project is to develop a computational method to assess the self-piercing riveted components subjected to the cyclic loads. To achieve this goal, two approaches are followed: Evaluation unsing internal forces: A substitute model is developed to describe the stiffness of self-piercing riveted joints subjected to different loading conditions. The parameters of the substitute model are identified and the internal force components acting on the joint are evaluated. The model provides the basis for the subsequent fatigue life estimation of self-piercing riveted components. For joints subjected to low bending moments, the fatigue life of components can be estimated accurately. Due to lack of specimen geometries producing pure bending and the combination of tension-bending forces, it is not possible to estimate the fatigue life of complex components subjected to high bending moments. Based on the results of [Mesc 16], the methodology is further developed to determine the stresses acting on the joint and to characterize the joining point with the use of simulations. The local concept proposed in the FKM guideline nonlinear provides the basis for the analytical assessment of self-piercing riveted components. In this regard, the cyclic behavior of the material and the local stresses are required as input data. The cyclic behavior of the aluminum EN AW-6181A-T6 and steel HX340LAD sheets were already determined in the previous project. Subsequently, in this project the properties of the rivet made of 38B2 steel are identified. The finite element analysis using elastic-plastic material behavior is used to determine the stresses in the joint subjected to the cyclic loads. To verify the model, the results of simulations and experiments are compared concerning the crack initiation zone as well as the determined number of cycles. To determine the stresses that can be used for the analytical assessment, the damage relevant load components need to be identified. In this regard, it is recommended to use the normal stress perpendicular to the crack propagation direction, the stress of crack opening mode I. Using the damage parameter PRAM and considering the support factors according to the FKM guideline nonlinear, a reliable estimation of the crack initiation zone within the joint is possible. Regarding the joint made of aluminum sheet EN AW-6181A, the methodology is able to provide promising results. However, regarding the joints made of aluminum EN AW-6181A and steel HX340LAD sheets, there is still potential to improve the results. The reasons for this are described in chapter 7.2.5 and 7.2.6. An analytical fatigue assessment is relatively easy to achieve with procedure 1. However, contrary to the objective formulated above, expensive fatigue tests are necessary to determine the failure conditions (strength values). This disadvantage can be circumvented by determining the strength information of individual joining points under different load types using procedure 2. The latter, in return, is not suitable for the assessment of complex components with several joining points. Due to the increasing calculation times of the simulation, the application in this case is not economically reasonable. By the described combination of method 1 and 2, the disadvantages of the two individual concepts can be compensated. An analytical fatigue assessment of self-piercing riveted components can be carried out based on the cyclic material behavior. The objective of the project was achieved.


                    Investigation of influencing parameters on the joint formation of the self-piercing riveting process

                    F. Kappe, S. Wituschek, M. Lechner, M. Bobbert, G. Meschut, M. Merklein, 2020


                    Stress state dependent damage modeling of self-pierce riveting process simulation using GISSMO damage model

                    M. Otroshi, M. Rossel, G. Meschut, Journal of Advanced Joining Processes (2020), 1


                    Experimentelle und numerische Untersuchung der Dämpfungseigenschaften geklebter Strukturen unter dynamischer Beanspruchung

                    J. Göddecke, G. Meschut, D. Teutenberg, T. Ummenhofer, M. Albiez, J. Damm, A. Matzenmiller, F. Kötz, in: 20. Kolloquium Gemeinsame Forschung in der Klebtechnik, 2020


                    Analyse und Vorhersage rezeptur- und zeitabhängiger Enthaftungserscheinungen geklebter SMC-Bauteile

                    V. Aßmuth, D. Teutenberg, G. Meschut, in: 20. Kolloquium Gemeinsame Forschung in der Klebtechnik, 2020, pp. 99-101


                    Auslegungsmethode für zyklisch beanspruchte Stahl/CFK-Klebverbindungen unter besonderer Berücksichtigung des Rissfortschritts

                    J. Kowatz, D. Teutenberg, G. Meschut, Forschungsvereinigung Stahlanwendung e. V., 2020


                    Offenzeit plasmaaktivierter Polymeroberflächen für robuste klebtechnische Prozesse

                    V. Aßmuth, D. Teutenberg, G. Meschut, S. Stepanov, J. Ihde, B. Mayer, DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V. , 2020, pp. 116


                    Analytische Auslegung der Schwingfestigkeit geclinchter Verbindungen

                    E. Unruh, D. Hein, G. Meschut, in: 10. Fügetechnisches Gemeinschaftskolloquium, 2020


                    Auslegungsmethode für zyklisch beanspruchte Stahl/CFK-Klebverbindungen unter besonderer Berücksichtigung des Rissfortschritts

                    J. Kowatz, D. Teutenberg, G. Meschut, in: 20. Kolloquium Gemeinsame Forschung in der Klebtechnik, 2020



                    Avoidance of liquid metal embrittlement during resistance spot welding by heat input dependent hold time adaption

                    C. Böhne, G. Meschut, M. Biegler, M. Rethmeier, Science and Technology of Welding and Joining (2020), 25(7), pp. 617-624


                    Prozesskettenbegleitende Vorgehensweise beim Mechanischen Fügen

                    P. Heyser, C. Scharr, T. Nehls, S. Wiesenmayer, W. Flügge, G. Meschut, in: 4. Workshop Digitalisierung, 2020


                    Simulationsbasierte Betriebsfestigkeitsanalyse stanzgenieteter Bauteile

                    M. Otroshi, G. Meschut, L. Masendorf, A. Esderts. Simulationsbasierte Betriebsfestigkeitsanalyse stanzgenieteter Bauteile. 2020.



                    Spannungszustandsabhängige Schädigungsmodellierung zum Halbhohlstanznieten

                    M. Otroshi, G. Meschut, Umformtechnik Blech Rohre Profile (2020)(7/20), pp. 48-50


                    2019

                    Analyse von Reparaturschweißverfahren für pressgehärtete Stähle in der Karosserieinstandsetzung

                    J. Ditter, G. Meschut, T.M. Wibbeke, Schweißen und Schneiden (2019), 71(6)


                    Fügetechniken für die Herstellung von Hybridbauteilen

                    G. Meschut, S. Meyer, J. Ditter, C.. Schmal, lightweight.design (2019)(3)




                    Entwicklung eines Fügeelements mit integriertem strukturierten Formabschnitt

                    P. Heyser, G. Meschut, M. Dross, K. Dröder, Europäische Forschungsgesellschaft für Blechverarbeitung e.V, 2019, pp. 100


                    Untersuchung der Werkzeugbeanspruchung und des Verschleißes beim Schneidclinchen

                    S. Wiesenmayer, D. Han, G. Meschut, M. Merklein, 2019



                    Joining Technologies for the Production of Hybrid Components

                    G. Meschut, S. Meyer, J. Ditter, C. Schmal, J. Göddecke, Lightweight Design worldwide (2019), pp. 50-57


                    Design concept for adhesively bonded steel/CFRP structures under cyclic loading

                    J. Kowatz, G. Meschut. Design concept for adhesively bonded steel/CFRP structures under cyclic loading. 2019.


                    Analyse und Vorhersage rezeptur- und zeitabhängiger Enthaftungserscheinungen geklebter SMC-Bauteile

                    V. Aßmuth, D. Teutenberg, G. Meschut, in: 19. Kolloquium Gemeinsame Forschung in der Klebtechnik, 2019, pp. 18-20


                    Analyse und Optimierung des Korrosions- und Alterungsverhaltens von hybriden Strukturen aus Metallen und CFK

                    J.A. Striewe, T. Tröster, J. Kowatz, G. Meschut, R. Grothe, G. Grundmeier, Europäische Forschungsgesellschaft für Blechverarbeitung, 2019


                    Einfache Ermittlung von Schnellhärtungsparametern für elementar geklebte Strukturen

                    J. Ditter, T. Aubel, D. Teutenberg, G. Meschut, Adhäsion Kleben&Dichten (2019)(1-2)


                    Geometric and corrosive influences on load-bearing capacity of multi-element shear-clinching specimen

                    D. Han, S. Wiesenmayer, M. Merklein, G. Meschut, in: PROCEEDINGS OF THE 22ND INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2019, 2019



                    Einseitiges Widerstandselementschweißen für die stahlintensive Mischbauweise

                    H. Günter, V. Haak, G. Meschut, J. Lotte, U. Reisgen. Einseitiges Widerstandselementschweißen für die stahlintensive Mischbauweise. 2019.


                    Stress-based lifetime prediction of adhesively bonded hybrid hyperelastic joints under multiaxial fatigue loading

                    S. Çavdar, D. Teutenberg, G. Meschut, A. Wulf, O. Hesebeck, M. Brede, B. Mayer, in: AB2019 - 5th International Conference on Structural Adhesive Bonding, Book of abstracts, Quântica Editora, Lda., 2019


                    Lebensdauerberechnung hybrider Klebverbindungen – Prüf- und Modellierungsstrategie zur Betriebsfestigkeitsanalyse von semistrukturellen Klebverbindungen mit FKV-Fügepartner

                    K. Tittmann, I. Koch, M. Gude, S. Çavdar, D. Teutenberg, G. Meschut, J. Wacker, G. Rybar, T. Melz, A. Wulf, M. Brede, O. Hesebeck, B. Mayer, in: Werkstoffwoche 2019, 2019


                    Stress-based fatigue life prediction of adhesively bonded hybrid hyperelastic joints under multiaxial stress conditions

                    S. Çavdar, D. Teutenberg, G. Meschut, A. Wulf, O. Hesebeck, M. Brede, B. Mayer, International Journal of Adhesion and Adhesives (2019)



                    Analytische Auslegung der Schwingfestigkeit geclinchter Verbindungen

                    E. Unruh, D. Hein, G. Meschut, in: 9. Fügetechnisches Gemeinschaftskolloquium, 2019


                    Entwicklung einer Methode zur Auslegung von Klebverbindungen in schwingbeanspruchten Konstruktionen des Landmaschinen- und Anlagenbaus (P1121)

                    J. Göddecke, G. Meschut, M. Laubrock, T. Göhrs, G. Kötting, Forschungsvereinigung Stahlanwendung e. V. , 2019



                    Entwicklung und Charakterisierung klebtechnisch gefügter Stahl/CFK-Prüfkörper zur Ableitung einer Auslegungsmethode

                    J. Kowatz, D. Teutenberg, G. Meschut, in: 9. Doktorandenseminar Klebtechnik, DVS Media GmbH, 2019, pp. 41-47




                    Simulationsbasierte Betriebsfestigkeitsanalyse stanzgenieteter Bauteile

                    M. Otroshi, G. Meschut, L. Masendorf, A. Esderts, Europäische Forschungsgesellschaft für Blechverarbeitung e.V., 2019, pp. 75-80


                    A test concept for bonded steel/CFRP structures

                    G. Meschut, D. Teutenberg, M. Wünsche, ADHESION ADHESIVES&SEALANTS (2019), pp. 22-27


                    Investigation of the tool wear behaviour in shear-clinching processes during the running-in phase

                    S. Wiesenmayer, D. Han, G. Meschut, M. Merklein, in: PROCEEDINGS OF THE 22ND INTERNATIONAL ESAFORM CONFERENCE ON MATERIAL FORMING: ESAFORM 2019, 2019



                    Increasing the strength of mechanically joined connections of metal and fiber-reinforced plastics using a structured auxiliary joining element

                    M. Dross, P. Heyser, A. Huerkamp, J. Beuscher, K. Dröder, G. Meschut, in: ICCM22 Proceedings, 2019


                    Max number of publications reached - all publications can be found in our Research Infomation System.

                    Open list in Research Information System

                    The University for the Information Society