Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Die Universität im Winter mit Blick auf den Turm vom J-Gebäude. Bildinformationen anzeigen

Die Universität im Winter mit Blick auf den Turm vom J-Gebäude.

Foto: Universität Paderborn, Adelheid Rutenburges

Alexander Tornede

Kontakt
Publikationen
 Alexander Tornede

Intelligente Systeme und Maschinelles Lernen

Mitglied - Wissenschaftlicher Mitarbeiter

Sonderforschungsbereich 901

Mitglied - Wissenschaftlicher Mitarbeiter

Telefon:
+49 5251 60-3352
Büro:
O4.149
Besucher:
Pohlweg 51
33098 Paderborn


Liste im Research Information System öffnen

2019

Automating Multi-Label Classification Extending ML-Plan

M.D. Wever, F. Mohr, A. Tornede, E. Hüllermeier, 2019

Existing tools for automated machine learning, such as Auto-WEKA, TPOT, auto-sklearn, and more recently ML-Plan, have shown impressive results for the tasks of single-label classification and regression. Yet, there is only little work on other types of machine learning problems so far. In particular, there is almost no work on automating the engineering of machine learning solutions for multi-label classification (MLC). We show how the scope of ML-Plan, an AutoML-tool for multi-class classification, can be extended towards MLC using MEKA, which is a multi-label extension of the well-known Java library WEKA. The resulting approach recursively refines MEKA's multi-label classifiers, nesting other multi-label classifiers for meta algorithms and single-label classifiers provided by WEKA as base learners. In our evaluation, we find that the proposed approach yields strong results and performs significantly better than a set of baselines we compare with.


Algorithm Selection as Recommendation: From Collaborative Filtering to Dyad Ranking

A. Tornede, M.D. Wever, E. Hüllermeier, in: Proceedings - 29. Workshop Computational Intelligence, Dortmund, 28. - 29. November 2019, KIT Scientific Publishing, Karlsruhe, 2019, pp. 135-146


Algorithm Selection as Recommendation: From Collaborative Filtering to Dyad Ranking

A. Hetzer, M.D. Wever, F. Mohr, E. Hüllermeier. Algorithm Selection as Recommendation: From Collaborative Filtering to Dyad Ranking. 2019.


Towards Automated Machine Learning for Multi-Label Classification

M.D. Wever, F. Mohr, E. Hüllermeier, A. Hetzer. Towards Automated Machine Learning for Multi-Label Classification. 2019.


From Automated to On-The-Fly Machine Learning

F. Mohr, M.D. Wever, A. Tornede, E. Hüllermeier. From Automated to On-The-Fly Machine Learning. 2019.


2017

jPL: A Java-based Software Framework for Preference Learning

P. Gupta, A. Hetzer, T. Tornede, S. Gottschalk, A. Kornelsen, S. Osterbrink, K. Pfannschmidt, E. Hüllermeier. jPL: A Java-based Software Framework for Preference Learning. 2017.



Liste im Research Information System öffnen

Die Universität der Informationsgesellschaft