Projektlogo

AProSys -KI-gestützte Assistenz- und Prognosesysteme für den nachhaltigen Einsatz in der intelligenten Verteilnetztechnik

Overview

Die Klima- und Energiepolitik bewirkt einen rasanten Wandel des Energieversorgungssystems in Deutschland. Die flächendeckende Einbindung regenerativer Energien und die Integration von Ladesäulen für Elektromobilität verursachen eine hohe, aktuell kaum quantifizierbare Dynamik. Eine sich an das dynamische Stromnetz anpassende Prognose potenzieller Ausfälle ist künftig erforderlich, um die hohen Anforderungen an ein resilientes Verteilnetz insbesondere für die Versorgungssicherheit und -qualität sicherzustellen. In einem intelligenten, netzweiten Energiemanagement ist zusätzlich auch die schnelle Reaktion auf Effizienzverluste für die Nachhaltigkeit des Verteilnetzes entscheidend.

Konkrete Handlungsempfehlungen müssen in Echtzeit interaktiv an Betreiber und Servicepersonal übertragen werden, um sie mit tätigkeitsrelevanten sowie situationsangepassten Informationen direkt an den Anlagen zu unterstützen bzw. anzuleiten. Die durch KI aufbereitete und in Form digitaler Medien direkt an den Anlagen "im Feld" zur Verfügung gestellte Unterstützung ermöglicht es zudem, Mitarbeitenden didaktisch individualisiert Kompetenzen zu vermitteln, damit unter anderem Herausforderungen des Fachkräftemangels aufgrund des fortschreitenden demographischen Wandels besser bewältigt werden können. Weiterhin kann Reisetätigkeit von Experten optimiert und ggf. reduziert werden, womit auch der CO2-Fußabdruck positiv beeinflusst wird. Insbesondere in Krisenzeiten, wie beispielsweise die Corona-Pandemie gezeigt hat, kann digitale Prozessunterstützung einen wichtigen Baustein zur Aufrechterhaltung der Versorgungsicherheit darstellen. Schlüssel hierzu ist ein Assistenzsystem, das auf einem um kognitive Fähigkeiten erweiterten digitalen Zwilling beruht.

Den Ausgangspunkt bildet das im Projekt FLEMING entwickelte sensorische Überwachungssystem für Mittelspannungsschaltanlagen, das technische Probleme auf der Komponentenebene detektiert. Im Rahmen des Projekts AProSys wird eine optimierte multifunktionale Variante dieses Systems für die Lebensdauerprognose adaptiert. Dabei bildet die Integration angepasster Prognosemodelle in das KI-gestützte Assistenzsystem den fundamentalen Bestandteil, die insbesondere versorgungssicherheitsrelevante Ereignisse präzise im sich dynamisch ändernden Stromnetz für einen langfristigen Zeitraum vorhersagen. Darauf basierende KI-Algorithmen stellen Betreibenden und dem technischen Wartungspersonal priorisierte Handlungsempfehlungen auf der Line-Up-Ebene zur Verfügung. Das Assistenzsystem weist damit nicht nur auf potenzielle Ausfälle hin, sondern wird dahingehend weiterentwickelt, dass es in technisch komplexen Fragestellungen unterstützen und wertvolle Fähigkeiten zur Problemlösung im Sinne eines kognitiven Systems vermitteln kann. Ein weiterer Bestandteil dieses kognitiven Assistenzsystems ist die digitale Unterstützung bei der Planung von Aktivitäten innerhalb des Workforce-Managements und des Wissensmanagements. Konzepte zur Neugestaltung der Dienstleistungen im Verteilnetz werden erarbeitet und validiert, damit die Assistenzsysteme einen effizienten Betrieb und eine wirtschaftliche Instandhaltung in Unternehmen ermöglichen können.

Objective

Zur Erreichung der Projektziele sind verschiedene Ebenen des Verteilnetzes einzubinden. Die Steuerungs- und Schutzkomponenten bilden die untere Ebene für die komplette Schaltanlage, die mit generischen Sensorlösungen für die Strom-, Spannungs- und Temperaturmessung sowie zur Erfassung von Vibrations- oder Akustiksignalen ausgestattet ist. Diese Sensorlösungen sind für die gleichzeitige Überwachung mehrerer Komponenten oder Anlagen inkl. ihrer Funktion zu ertüchtigen. Darauf aufbauend liegt der Fokus in der praktischen Realisierung des kognitiven Assistenzsystems, das auf Basis der Sensorsignale der Komponentenebene sowie geeigneter Prognosemodelle dynamisch priorisierte Handlungsempfehlungen für die betrachtete Schaltanlage ableitet. Darüber hinaus wird angestrebt, mit diesem System zusätzlich benachbarte Energietechnikanlagen und die Umgebung zu überwachen, z.B. in Bezug auf elektrische Ereignisse wie Teilentladung in Erdkabeln. Ebenfalls wird die Personensicherheit durch zuverlässige anonymisierte Detektion von anwesendem Servicepersonal sichergestellt. Die entwickelten Prognose- und Assistenzsysteme werden bei den am Projekt beteiligten Betreibern experimentell validiert und eine Pilotierung wird angestrebt, um den Mehrwert für die Transformation des Verteilnetzes im Rahmen der Energie- und Mobilitätswende in Deutschland konkret zu belegen.

Key Facts

Research profile area:
Intelligent Technical Systems
Project type:
Research
Project duration:
01/2023 - 12/2025
Contribution to sustainability:
Affordable and Clean Energy
Funded by:
BMWK
Website:
Homepage

More Information

Principal Investigators

contact-box image

Prof. Dr. Daniel Beverungen

Wirtschaftsinformatik, insb. Betriebliche Informationssysteme

About the person
contact-box image

Prof. Dr. Oliver Müller

Dekanat Wirtschaftswissenschaften

About the person

Cooperating Institutions

Karlsruher Institut für Technologie (KIT)

Cooperating Institution

Go to website

Forschungsinstitut für Rationalisierung (FIR) an der RWTH Aachen

Cooperating Institution

Go to website

SICP – Software Innovation Campus Paderborn

Cooperating Institution

Go to website

Contact

If you have any questions about this project, contact us!

Sascha Kaltenpoth

Wirtschaftsinformatik, insb. Data Analytics

Wissenschaftlicher Mitarbeiter - Mitglied - KI-Assistenzsystementwicklung im Projekt AProSys

contact-box image

Dr. Philipp zur Heiden

Wirtschaftsinformatik, insb. Betriebliche Informationssysteme

Postdoc

contact-box image

Jennifer Priefer

Wirtschaftsinformatik, insb. Betriebliche Informationssysteme

Wissenschaftliche Mitarbeiterin

contact-box image