Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Snow on campus. Show image information

Snow on campus.

Photo: Paderborn University, Johannes Pauly

Christoph Böddeker

Contact
Publications
 Christoph  Böddeker

Communications Engineering

Research Assistant - Research & Teaching

Phone:
+49 5251 60-5288
Fax:
+49 5251 60-3627
Office:
P7.2.06
Visitor:
Pohlweg 47-49
33098 Paderborn

Open list in Research Information System

2020

Jointly optimal denoising, dereverberation, and source separation

T. Nakatani, C. Boeddeker, K. Kinoshita, R. Ikeshita, M. Delcroix, R. Haeb-Umbach, IEEE/ACM Transactions on Audio, Speech, and Language Processing (2020), pp. 1-1


Towards a speaker diarization system for the CHiME 2020 dinner party transcription

C. Boeddeker, T. Cord-Landwehr, J. Heitkaemper, C. Zorila, D. Hayakawa, M. Li, M. Liu, R. Doddipatla, R. Haeb-Umbach, in: Proc. CHiME 2020 Workshop on Speech Processing in Everyday Environments, 2020


End-to-End Training of Time Domain Audio Separation and Recognition

T.C. von Neumann, K. Kinoshita, L. Drude, C. Boeddeker, M. Delcroix, T. Nakatani, R. Haeb-Umbach, in: ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020, pp. 7004-7008

The rising interest in single-channel multi-speaker speech separation sparked development of End-to-End (E2E) approaches to multispeaker speech recognition. However, up until now, state-of-theart neural network–based time domain source separation has not yet been combined with E2E speech recognition. We here demonstrate how to combine a separation module based on a Convolutional Time domain Audio Separation Network (Conv-TasNet) with an E2E speech recognizer and how to train such a model jointly by distributing it over multiple GPUs or by approximating truncated back-propagation for the convolutional front-end. To put this work into perspective and illustrate the complexity of the design space, we provide a compact overview of single-channel multi-speaker recognition systems. Our experiments show a word error rate of 11.0% on WSJ0-2mix and indicate that our joint time domain model can yield substantial improvements over cascade DNN-HMM and monolithic E2E frequency domain systems proposed so far.


Demystifying TasNet: A Dissecting Approach

J. Heitkaemper, D. Jakobeit, C. Boeddeker, L. Drude, R. Haeb-Umbach, in: ICASSP 2020 Virtual Barcelona Spain, 2020

In recent years time domain speech separation has excelled over frequency domain separation in single channel scenarios and noise-free environments. In this paper we dissect the gains of the time-domain audio separation network (TasNet) approach by gradually replacing components of an utterance-level permutation invariant training (u-PIT) based separation system in the frequency domain until the TasNet system is reached, thus blending components of frequency domain approaches with those of time domain approaches. Some of the intermediate variants achieve comparable signal-to-distortion ratio (SDR) gains to TasNet, but retain the advantage of frequency domain processing: compatibility with classic signal processing tools such as frequency-domain beamforming and the human interpretability of the masks. Furthermore, we show that the scale invariant signal-to-distortion ratio (si-SDR) criterion used as loss function in TasNet is related to a logarithmic mean square error criterion and that it is this criterion which contributes most reliable to the performance advantage of TasNet. Finally, we critically assess which gains in a noise-free single channel environment generalize to more realistic reverberant conditions.


    Multi-Talker ASR for an Unknown Number of Sources: Joint Training of Source Counting, Separation and ASR

    T.C. von Neumann, C. Boeddeker, L. Drude, K. Kinoshita, M. Delcroix, T. Nakatani, R. Haeb-Umbach, T. von Neuann, in: Proc. Interspeech 2020, 2020, pp. 3097-3101

    Most approaches to multi-talker overlapped speech separation and recognition assume that the number of simultaneously active speakers is given, but in realistic situations, it is typically unknown. To cope with this, we extend an iterative speech extraction system with mechanisms to count the number of sources and combine it with a single-talker speech recognizer to form the first end-to-end multi-talker automatic speech recognition system for an unknown number of active speakers. Our experiments show very promising performance in counting accuracy, source separation and speech recognition on simulated clean mixtures from WSJ0-2mix and WSJ0-3mix. Among others, we set a new state-of-the-art word error rate on the WSJ0-2mix database. Furthermore, our system generalizes well to a larger number of speakers than it ever saw during training, as shown in experiments with the WSJ0-4mix database.


    2019

    Guided Source Separation Meets a Strong ASR Backend: Hitachi/Paderborn University Joint Investigation for Dinner Party ASR

    N. Kanda, C. Boeddeker, J. Heitkaemper, Y. Fujita, S. Horiguchi, R. Haeb-Umbach, in: INTERSPEECH 2019, Graz, Austria, 2019

    In this paper, we present Hitachi and Paderborn University’s joint effort for automatic speech recognition (ASR) in a dinner party scenario. The main challenges of ASR systems for dinner party recordings obtained by multiple microphone arrays are (1) heavy speech overlaps, (2) severe noise and reverberation, (3) very natural onversational content, and possibly (4) insufficient training data. As an example of a dinner party scenario, we have chosen the data presented during the CHiME-5 speech recognition challenge, where the baseline ASR had a 73.3% word error rate (WER), and even the best performing system at the CHiME-5 challenge had a 46.1% WER. We extensively investigated a combination of the guided source separation-based speech enhancement technique and an already proposed strong ASR backend and found that a tight combination of these techniques provided substantial accuracy improvements. Our final system achieved WERs of 39.94% and 41.64% for the development and evaluation data, respectively, both of which are the best published results for the dataset. We also investigated with additional training data on the official small data in the CHiME-5 corpus to assess the intrinsic difficulty of this ASR task.


    SMS-WSJ: Database, performance measures, and baseline recipe for multi-channel source separation and recognition

    L. Drude, J. Heitkaemper, C. Boeddeker, R. Haeb-Umbach, ArXiv e-prints (2019)

    We present a multi-channel database of overlapping speech for training, evaluation, and detailed analysis of source separation and extraction algorithms: SMS-WSJ -- Spatialized Multi-Speaker Wall Street Journal. It consists of artificially mixed speech taken from the WSJ database, but unlike earlier databases we consider all WSJ0+1 utterances and take care of strictly separating the speaker sets present in the training, validation and test sets. When spatializing the data we ensure a high degree of randomness w.r.t. room size, array center and rotation, as well as speaker position. Furthermore, this paper offers a critical assessment of recently proposed measures of source separation performance. Alongside the code to generate the database we provide a source separation baseline and a Kaldi recipe with competitive word error rates to provide common ground for evaluation.


    An Investigation Into the Effectiveness of Enhancement in ASR Training and Test for Chime-5 Dinner Party Transcription

    C. Zorila, C. Boeddeker, R. Doddipatla, R. Haeb-Umbach, in: ASRU 2019, Sentosa, Singapore, 2019

    Despite the strong modeling power of neural network acoustic models, speech enhancement has been shown to deliver additional word error rate improvements if multi-channel data is available. However, there has been a longstanding debate whether enhancement should also be carried out on the ASR training data. In an extensive experimental evaluation on the acoustically very challenging CHiME-5 dinner party data we show that: (i) cleaning up the training data can lead to substantial error rate reductions, and (ii) enhancement in training is advisable as long as enhancement in test is at least as strong as in training. This approach stands in contrast and delivers larger gains than the common strategy reported in the literature to augment the training database with additional artificially degraded speech. Together with an acoustic model topology consisting of initial CNN layers followed by factorized TDNN layers we achieve with 41.6% and 43.2% WER on the DEV and EVAL test sets, respectively, a new single-system state-of-the-art result on the CHiME-5 data. This is a 8% relative improvement compared to the best word error rate published so far for a speech recognizer without system combination.


    2018

    Integration neural network based beamforming and weighted prediction error dereverberation

    L. Drude, C. Boeddeker, J. Heymann, K. Kinoshita, M. Delcroix, T. Nakatani, R. Haeb-Umbach, in: INTERSPEECH 2018, Hyderabad, India, 2018

    The weighted prediction error (WPE) algorithm has proven to be a very successful dereverberation method for the REVERB challenge. Likewise, neural network based mask estimation for beamforming demonstrated very good noise suppression in the CHiME 3 and CHiME 4 challenges. Recently, it has been shown that this estimator can also be trained to perform dereverberation and denoising jointly. However, up to now a comparison of a neural beamformer and WPE is still missing, so is an investigation into a combination of the two. Therefore, we here provide an extensive evaluation of both and consequently propose variants to integrate deep neural network based beamforming with WPE. For these integrated variants we identify a consistent word error rate (WER) reduction on two distinct databases. In particular, our study shows that deep learning based beamforming benefits from a model-based dereverberation technique (i.e. WPE) and vice versa. Our key findings are: (a) Neural beamforming yields the lower WERs in comparison to WPE the more channels and noise are present. (b) Integration of WPE and a neural beamformer consistently outperforms all stand-alone systems.


    Front-End Processing for the CHiME-5 Dinner Party Scenario

    C. Boeddeker, J. Heitkaemper, J. Schmalenstroeer, L. Drude, J. Heymann, R. Haeb-Umbach, in: Proc. CHiME 2018 Workshop on Speech Processing in Everyday Environments, Hyderabad, India, 2018

    This contribution presents a speech enhancement system for the CHiME-5 Dinner Party Scenario. The front-end employs multi-channel linear time-variant filtering and achieves its gains without the use of a neural network. We present an adaptation of blind source separation techniques to the CHiME-5 database which we call Guided Source Separation (GSS). Using the baseline acoustic and language model, the combination of Weighted Prediction Error based dereverberation, guided source separation, and beamforming reduces the WER by 10:54% (relative) for the single array track and by 21:12% (relative) on the multiple array track.


    NARA-WPE: A Python package for weighted prediction error dereverberation in Numpy and Tensorflow for online and offline processing

    L. Drude, J. Heymann, C. Boeddeker, R. Haeb-Umbach, in: ITG 2018, Oldenburg, Germany, 2018

    NARA-WPE is a Python software package providing implementations of the weighted prediction error (WPE) dereverberation algorithm. WPE has been shown to be a highly effective tool for speech dereverberation, thus improving the perceptual quality of the signal and improving the recognition performance of downstream automatic speech recognition (ASR). It is suitable both for single-channel and multi-channel applications. The package consist of (1) a Numpy implementation which can easily be integrated into a custom Python toolchain, and (2) a TensorFlow implementation which allows integration into larger computational graphs and enables backpropagation through WPE to train more advanced front-ends. This package comprises of an iterative offline (batch) version, a block-online version, and a frame-online version which can be used in moderately low latency applications, e.g. digital speech assistants.


    Exploring Practical Aspects of Neural Mask-Based Beamforming for Far-Field Speech Recognition

    C. Boeddeker, H. Erdogan, T. Yoshioka, R. Haeb-Umbach, in: ICASSP 2018, Calgary, Canada, 2018

    This work examines acoustic beamformers employing neural networks (NNs) for mask prediction as front-end for automatic speech recognition (ASR) systems for practical scenarios like voice-enabled home devices. To test the versatility of the mask predicting network, the system is evaluated with different recording hardware, different microphone array designs, and different acoustic models of the downstream ASR system. Significant gains in recognition accuracy are obtained in all configurations despite the fact that the NN had been trained on mismatched data. Unlike previous work, the NN is trained on a feature level objective, which gives some performance advantage over a mask related criterion. Furthermore, different approaches for realizing online, or adaptive, NN-based beamforming are explored, where the online algorithms still show significant gains compared to the baseline performance.


    The RWTH/UPB System Combination for the CHiME 2018 Workshop

    M. Kitza, W. Michel, C. Boeddeker, J. Heitkaemper, T. Menne, R. Schlüter, H. Ney, J. Schmalenstroeer, L. Drude, J. Heymann, R. Haeb-Umbach, in: Proc. CHiME 2018 Workshop on Speech Processing in Everyday Environments, Hyderabad, India, 2018

    This paper describes the systems for the single-array track and the multiple-array track of the 5th CHiME Challenge. The final system is a combination of multiple systems, using Confusion Network Combination (CNC). The different systems presented here are utilizing different front-ends and training sets for a Bidirectional Long Short-Term Memory (BLSTM) Acoustic Model (AM). The front-end was replaced by enhancements provided by Paderborn University [1]. The back-end has been implemented using RASR [2] and RETURNN [3]. Additionally, a system combination including the hypothesis word graphs from the system of the submission [1] has been performed, which results in the final best system.


    2017

    BEAMNET: End-to-End Training of a Beamformer-Supported Multi-Channel ASR System

    J. Heymann, L. Drude, C. Boeddeker, P. Hanebrink, R. Haeb-Umbach, in: Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2017

    This paper presents an end-to-end training approach for a beamformer-supported multi-channel ASR system. A neural network which estimates masks for a statistically optimum beamformer is jointly trained with a network for acoustic modeling. To update its parameters, we propagate the gradients from the acoustic model all the way through feature extraction and the complex valued beamforming operation. Besides avoiding a mismatch between the front-end and the back-end, this approach also eliminates the need for stereo data, i.e., the parallel availability of clean and noisy versions of the signals. Instead, it can be trained with real noisy multichannel data only. Also, relying on the signal statistics for beamforming, the approach makes no assumptions on the configuration of the microphone array. We further observe a performance gain through joint training in terms of word error rate in an evaluation of the system on the CHiME 4 dataset.


    On the Computation of Complex-valued Gradients with Application to Statistically Optimum Beamforming

    C. Boeddeker, P. Hanebrink, L. Drude, J. Heymann, R. Haeb-Umbach, 2017

    This report describes the computation of gradients by algorithmic differentiation for statistically optimum beamforming operations. Especially the derivation of complex-valued functions is a key component of this approach. Therefore the real-valued algorithmic differentiation is extended via the complex-valued chain rule. In addition to the basic mathematic operations the derivative of the eigenvalue problem with complex-valued eigenvectors is one of the key results of this report. The potential of this approach is shown with experimental results on the CHiME-3 challenge database. There, the beamforming task is used as a front-end for an ASR system. With the developed derivatives a joint optimization of a speech enhancement and speech recognition system w.r.t. the recognition optimization criterion is possible.


    Optimizing Neural-Network Supported Acoustic Beamforming by Algorithmic Differentiation

    C. Boeddeker, P. Hanebrink, L. Drude, J. Heymann, R. Haeb-Umbach, in: Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP), 2017

    In this paper we show how a neural network for spectral mask estimation for an acoustic beamformer can be optimized by algorithmic differentiation. Using the beamformer output SNR as the objective function to maximize, the gradient is propagated through the beamformer all the way to the neural network which provides the clean speech and noise masks from which the beamformer coefficients are estimated by eigenvalue decomposition. A key theoretical result is the derivative of an eigenvalue problem involving complex-valued eigenvectors. Experimental results on the CHiME-3 challenge database demonstrate the effectiveness of the approach. The tools developed in this paper are a key component for an end-to-end optimization of speech enhancement and speech recognition.


    Multi-Stage Coherence Drift Based Sampling Rate Synchronization for Acoustic Beamforming

    J. Schmalenstroeer, J. Heymann, L. Drude, C. Boeddeker, R. Haeb-Umbach, in: IEEE 19th International Workshop on Multimedia Signal Processing (MMSP), 2017

    Multi-channel speech enhancement algorithms rely on a synchronous sampling of the microphone signals. This, however, cannot always be guaranteed, especially if the sensors are distributed in an environment. To avoid performance degradation the sampling rate offset needs to be estimated and compensated for. In this contribution we extend the recently proposed coherence drift based method in two important directions. First, the increasing phase shift in the short-time Fourier transform domain is estimated from the coherence drift in a Matched Filterlike fashion, where intermediate estimates are weighted by their instantaneous SNR. Second, an observed bias is removed by iterating between offset estimation and compensation by resampling a couple of times. The effectiveness of the proposed method is demonstrated by speech recognition results on the output of a beamformer with and without sampling rate offset compensation between the input channels. We compare MVDR and maximum-SNR beamformers in reverberant environments and further show that both benefit from a novel phase normalization, which we also propose in this contribution.


    2016


    Open list in Research Information System

    The University for the Information Society