Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Digitale Infotage für Schüler*innen vom 06.-09. Februar 2023

Photo: Universität Paderborn, Adelheid Rutenburges

Dr. Thomas Hummel

Contact
Publications
Dr. Thomas Hummel

Mesoscopic Quantum Optics

PostDoc - Cryogenic electronics

Phone:
+49 5251 60-4592
Office:
ST.0.301

Open list in Research Information System

2023

Nanosecond gating of superconducting nanowire single-photon detectors using cryogenic bias circuitry

T. Hummel, A. Widhalm, J.P. Höpker, K. Jöns, J. Chang, A. Fognini, S. Steinhauer, V. Zwiller, A. Zrenner, T. Bartley, Optics Express (2023), 31(1), 610

<jats:p>Superconducting nanowire single-photon detectors (SNSPDs) show near unity efficiency, low dark count rate, and short recovery time. Combining these characteristics with temporal control of SNSPDs broadens their applications as in active de-latching for higher dynamic range counting or temporal filtering for pump-probe spectroscopy or LiDAR. To that end, we demonstrate active gating of an SNSPD with a minimum off-to-on rise time of 2.4 ns and a total gate length of 5.0 ns. We show how the rise time depends on the inductance of the detector in combination with the control electronics. The gate window is demonstrated to be fully and freely, electrically tunable up to 500 ns at a repetition rate of 1.0 MHz, as well as ungated, free-running operation. Control electronics to generate the gating are mounted on the 2.3 K stage of a closed-cycle sorption cryostat, while the detector is operated on the cold stage at 0.8 K. We show that the efficiency and timing jitter of the detector is not altered during the on-time of the gating window. We exploit gated operation to demonstrate a method to increase in the photon counting dynamic range by a factor 11.2, as well as temporal filtering of a strong pump in an emulated pump-probe experiment.</jats:p>


2022

Cryogenic electro-optic modulation in titanium in-diffused lithium niobate waveguides

F. Thiele, F. vom Bruch, J. Brockmeier, M. Protte, T. Hummel, R. Ricken, V. Quiring, S. Lengeling, H. Herrmann, C. Eigner, C. Silberhorn, T. Bartley, Journal of Physics: Photonics (2022), 4(3), 034004

<jats:title>Abstract</jats:title> <jats:p>Lithium niobate is a promising platform for integrated quantum optics. In this platform, we aim to efficiently manipulate and detect quantum states by combining superconducting single photon detectors and modulators. The cryogenic operation of a superconducting single photon detector dictates the optimisation of the electro-optic modulators under the same operating conditions. To that end, we characterise a phase modulator, directional coupler, and polarisation converter at both ambient and cryogenic temperatures. The operation voltage <jats:inline-formula> <jats:tex-math><?CDATA $V_{\pi/2}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:msub> <mml:mi>V</mml:mi> <mml:mrow> <mml:mi>π</mml:mi> <mml:mrow> <mml:mo>/</mml:mo> </mml:mrow> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpphotonac6c63ieqn1.gif" xlink:type="simple" /> </jats:inline-formula> of these modulators increases, due to the decrease in the electro-optic effect, by 74% for the phase modulator, 84% for the directional coupler and 35% for the polarisation converter below 8.5<jats:inline-formula> <jats:tex-math><?CDATA $\,\mathrm{K}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:mi mathvariant="normal">K</mml:mi> </mml:mrow> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpphotonac6c63ieqn2.gif" xlink:type="simple" /> </jats:inline-formula>. The phase modulator preserves its broadband nature and modulates light in the characterised wavelength range. The unbiased bar state of the directional coupler changed by a wavelength shift of 85<jats:inline-formula> <jats:tex-math><?CDATA $\,\mathrm{nm}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:mi mathvariant="normal">n</mml:mi> <mml:mi mathvariant="normal">m</mml:mi> </mml:mrow> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpphotonac6c63ieqn3.gif" xlink:type="simple" /> </jats:inline-formula> while cooling the device down to 5<jats:inline-formula> <jats:tex-math><?CDATA $\,\mathrm{K}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:mi mathvariant="normal">K</mml:mi> </mml:mrow> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpphotonac6c63ieqn4.gif" xlink:type="simple" /> </jats:inline-formula>. The polarisation converter uses periodic poling to phasematch the two orthogonal polarisations. The phasematched wavelength of the utilised poling changes by 112<jats:inline-formula> <jats:tex-math><?CDATA $\,\mathrm{nm}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:mi mathvariant="normal">n</mml:mi> <mml:mi mathvariant="normal">m</mml:mi> </mml:mrow> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpphotonac6c63ieqn5.gif" xlink:type="simple" /> </jats:inline-formula> when cooling to 5<jats:inline-formula> <jats:tex-math><?CDATA $\,\mathrm{K}$?></jats:tex-math> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" overflow="scroll"> <mml:mrow> <mml:mi mathvariant="normal">K</mml:mi> </mml:mrow> </mml:math> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="jpphotonac6c63ieqn6.gif" xlink:type="simple" /> </jats:inline-formula>.</jats:p>


Opto-electronic bias of a superconducting nanowire single photon detector using a cryogenic photodiode

F. Thiele, T. Hummel, M. Protte, T. Bartley, APL Photonics (2022), 7(8), 081303

<jats:p> Superconducting Nanowire Single Photon Detectors (SNSPDs) have become an integral part of quantum optics in recent years because of their high performance in single photon detection. We present a method to replace the electrical input by supplying the required bias current via the photocurrent of a photodiode situated on the cold stage of the cryostat. Light is guided to the bias photodiode through an optical fiber, which enables a lower thermal conduction and galvanic isolation between room temperature and the cold stage. We show that an off-the-shelf InGaAs–InP photodiode exhibits a responsivity of at least 0.55 A/W at 0.8 K. Using this device to bias an SNSPD, we characterize the count rate dependent on the optical power incident on the photodiode. This configuration of the SNSPD and photodiode shows an expected plateau in the single photon count rate with an optical bias power on the photodiode above 6.8 µW. Furthermore, we compare the same detector under both optical and electrical bias, and show there is no significant changes in performance. This has the advantage of avoiding an electrical input cable, which reduces the latent heat load by a factor of 100 and, in principle, allows for low loss RF current supply at the cold stage. </jats:p>


Open list in Research Information System

The University for the Information Society