Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Paderborn University in spring. Show image information

Paderborn University in spring.

Photo: Paderborn University, Kamil Glabica.

Mohsen Ahmadi Fahandar

Contact
Profile
Publications
 Mohsen Ahmadi Fahandar

Intelligent Systems and Machine Learning

Member - Research Student

Phone:
+49 5251 60-3353
Office:
O4.167
Visitor:
Pohlweg 51
33098 Paderborn

International Graduate School of Intelligent Systems in Automation Technology (ISA)

Research Student

Phone:
+49 5251 60-3353
Office:
O4.167
Visitor:
Pohlweg 51
33098 Paderborn

I'm in the fourth year of my PhD studies (Computer Science) at the University of Paderborn and pleased to work with Prof. Dr. Eyke Hüllermeier as my PhD supervisor. 
I received my Master's degree in Computer Science from University of Bonn. My Master's thesis was entitled as "Predicting Potent Compounds via Model-Based Global Optimization" ([pdf] [slides]), and supervised by Prof. Dr. Holger Fröhlich.

arXiv papers

Mohsen Ahmadi Fahandar, Eyke Hüllermeier. 
Analogy-Based Preference Learning with Kernels (arXiv:1901.02001)

Conference papers

Mohsen Ahmadi Fahandar, Eyke Hüllermeier. 
Learning to Rank Based on Analogical Reasoning 
Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI 2018

Mohsen Ahmadi Fahandar, Eyke Hüllermeier, Inés Couso. 
Statistical Inference for Incomplete Ranking Data: The Case of Rank-Dependent Coarsening 
Proceedings of the 34th International Conference on Machine Learning (ICML 2017

Inés Couso, Mohsen Ahmadi, Eyke Hüllermeier. 
Statistical Inference for Incomplete Ranking Data: A Comparison of two Likelihood-Based Estimators 
Proceedings of the DA2PL'2016 EURO Mini Conference (DA2PL 2016

Journal papers

Mohsen Ahmadi, Martin Vogt, Preeti Iyer, Jürgen Bajorath, Holger Fröhlich.
Predicting Potent Compounds via Model-Based Global Optimization 
Journal of Chemical Information and Modeling (JCIM 2013

The University for the Information Society