TRR 142 - Ultrafast coherent opto-electronic control of a photonic quantum system (B06*)


In this project we will integrate semiconductor quantum dots in field-tunable microcavity heterostructures to achieve ultrafast coherent opto-electronic control of the emitter cavity coupling. By tuning different quantum dot transitions in and out of the cavity resonance we aim to generate (i) cavity assisted two-photon emission, (ii) hyper entangled photon states, as well as (iii) syncronization of the emission of remote quantum emitters. Our approach will enable the realization of scalable single-photon and photon-pair sources with almost ideal properties of the emitted photons.

Key Facts

Research profile area:
Optoelectronics and Photonics
Project type:
Project duration:
01/2022 - 12/2026
Funded by:

More Information

Principal Investigators

contact-box image

Prof. Dr. Jens Förstner

Institute for Photonic Quantum Systems (PhoQS)

About the person
contact-box image

Prof. Dr. Dirk Reuter

Optoelectronic materials and devices

About the person
contact-box image

Prof. Dr. Klaus Jöns

Hybrid Quantum Photonic Devices

About the person

Project Team

contact-box image

Dustin Siebert

Theoretical Electrical Engineering

About the person


How to suppress radiative losses in high-contrast integrated Bragg gratings
M. Hammer, H. Farheen, J. Förstner, Journal of the Optical Society of America B 40 (2023) 862.
Efficient Modeling and Tailoring of Nonlinear Wavefronts in Dielectric Metasurfaces
D. Hähnel, J. Förstner, V. Myroshnychenko, ACS Photonics (2023).
Optimized, Highly Efficient Silicon Antennas for Optical Phased Arrays
H. Farheen, A. Strauch, J.C. Scheytt, V. Myroshnychenko, J. Förstner, Photonics and Nanostructures - Fundamentals and Applications 58 (2023) 101207.
On‐Demand Indistinguishable and Entangled Photons Using Tailored Cavity Designs
D. Bauch, D. Siebert, K. Jöns, J. Förstner, S. Schumacher, Advanced Quantum Technologies (2023).
Show all publications