Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Sunny start to the new semester (April 2023). Show image information

Sunny start to the new semester (April 2023).

Photo: Paderborn University, Besim Mazhiqi

Dr.-Ing. Steffen Jesinghausen

Contact
Publications
Dr.-Ing. Steffen Jesinghausen

Partikelverfahrenstechnik (PVT)

Second Head - Academic Senior Councillor - Senior Researcher

Phone:
+49 5251 60-3409
Fax:
+49 5251 60-3207
Office:
E3.122
Web:
Visitor:
Pohlweg 55
33098 Paderborn

Open list in Research Information System

2023

Instabilities of Polymer Melt Suspensions under Uniaxial Extension (Poster)

M. Neukötter, S. Jesinghausen, H. Schmid. Instabilities of Polymer Melt Suspensions under Uniaxial Extension (Poster). In: International Congress on Rheology, Athens, 2023.


Experimental and simulative determination and correction of the effective gap extension in structured coaxial measuring systems

S. Josch, S. Jesinghausen, C. Dechert, H. Schmid, Rheologica Acta (2023)

<jats:title>Abstract</jats:title><jats:p>The use of structured measuring systems to prevent wall slip is a common approach to obtain absolute rheological values. Typically, only the minimum distance between the measuring surfaces is used for further calculation, implying that no flow occurs between the structural elements. But this assumption is misleading, and a gap correction is necessary. To determine the radius correction <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Delta r$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mi>r</mml:mi> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> for specific geometries, we conducted investigations on three Newtonian fluids (two silicon oils and one suspension considered to be Newtonian in the relevant shear rate range). The results show that <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Delta r$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mi>r</mml:mi> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> is not only shear- and material-independent, but geometry-dependent, providing a Newtonian flow behaviour in a similar viscosity range. Therefore, a correction value can be determined with only minute deviations in different Newtonian fluids. As the conducted laboratory measurements are very time-consuming and expensive, a CFD-approach with only very small deviations was additionally developed and compared for validation purposes. Therefore, simulation is an effective and resource-efficient alternative to the presented laboratory measurements to determine <jats:inline-formula><jats:alternatives><jats:tex-math>$$\Delta r$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Δ</mml:mi> <mml:mi>r</mml:mi> </mml:mrow> </mml:math></jats:alternatives></jats:inline-formula> for the correction of structured coaxial geometries even for non-Newtonian fluids in the future.</jats:p>


Development of an adaptive coaxial concrete rheometer and rheological characterisation of fresh concrete

S. Josch, S. Jesinghausen, H. Schmid, Applied Rheology (2023), 33(1)

<jats:title>Abstract</jats:title> <jats:p>The accessibility to rheological parameters for concrete is becoming more and more relevant. This is mainly related to the constantly emerging challenges, such as not only the development of high-strength concretes is progressing very fast but also the simulation of the flow behaviour is of high importance. The main problem, however, is that the rheological characterisation of fresh concrete is not possible via commercial rheometers. The so-called concrete rheometers provide valuable relative values for comparing different concretes, but they cannot measure absolute values. Therefore, we developed an adaptive coaxial concrete rheometer (ACCR) that allows the measurement of fresh concrete with particles up to <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="graphic/j_arh-2022-0140_eq_001.png" /> <m:math xmlns:m="http://www.w3.org/1998/Math/MathML"> <m:msub> <m:mrow> <m:mi>d</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant="normal">max</m:mi> </m:mrow> </m:msub> <m:mo>=</m:mo> <m:mn>5.5</m:mn> <m:mspace width=".5em" /> <m:mi mathvariant="normal">mm</m:mi> </m:math> <jats:tex-math>{d}_{{\rm{\max }}}=5.5\hspace{.5em}{\rm{mm}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>. The comparison of the ACCR with a commercial rheometer showed very good agreement for selected test materials (Newtonian fluid, shear thinning fluid, suspension, and yield stress fluid), so that self-compacting concrete was subsequently measured. Since these measurements showed a very high reproducibility, the rheological properties of the fresh concrete could be determined with high accuracy. The common flow models (Bingham (B), Herschel–Bulkley, modified Bingham (MB) models) were also tested for their applicability, with the Bingham and the modified Bingham model proving to be the best suitable ones.</jats:p>


Particles as Seeds for Instabilities in Uniaxially Elongated Polymer Suspension Filaments (Presentation)

M. Neukötter, S. Jesinghausen, H. Schmid. Particles as Seeds for Instabilities in Uniaxially Elongated Polymer Suspension Filaments (Presentation). In: Annual Meeting of the German Rheological Society (DRG) , Berlin, 2023.


2022

Model droplet formation in extensional filament stretching within a Filament Extension Atomizer

M. Neukötter, S. Jesinghausen, H. Schmid, Rheologica Acta (2022)

<jats:title>Abstract</jats:title><jats:p>Further innovation in the field of selective laser sintering (SLS) is strongly connected to the availability of new materials since the market is dominated by polyamide 12 (&gt;90%). The aim of this publication is to develop a descriptive model for the droplet formation process in a Filament Extension Atomizer to predict the applicability to exploit further polymers for the SLS process. The feasibility was tested, investigated and characterized using a “Dripping out of a nozzle” setup for uniaxial extension. The droplet formation process was then observed via high-speed camera imaging and classified for certain parameters. The experiments were carried out using semi-diluted polyethylene oxide (600–4000 kg/mol), glycerol and water solutions as model fluids. Driven by the Plateau-Rayleigh instability, different types of spherical droplets were observed and various droplet formation mechanisms demonstrated and analyzed. Based on the experimental results, a predictive model is derived to describe various essential parameters.</jats:p>


Innovative Werkstoffherstellung für das Polymer Laser Sintern – Teil 2

M.J. Rüther, S.H. Klippstein, S. Ponusamy, S. Jesinghausen, H. Schmid, Werkstoffe (2022), 6, pp. 18 - 19


Innovative Werkstoffherstellung für das Polymer Laser Sintern – Teil 1

M.J. Rüther, S.H. Klippstein, S. Ponusamy, S. Jesinghausen, H. Schmid, Werkstoffe (2022), 5, pp. 28-29


Triggering instabilities of polymer solution suspensions under uniaxial extension (Presentation)

M. Neukötter, S. Jesinghausen, H. Schmid. Triggering instabilities of polymer solution suspensions under uniaxial extension (Presentation). In: Joint Online Symposium on Rheology, Digital, 2022.


Instability analysis of suspensions with a polymer solution matrix (Presentation)

M. Neukötter, S. Jesinghausen, H. Schmid. Instability analysis of suspensions with a polymer solution matrix (Presentation). In: Annual European Rheology Conference, Sevilla, 2022.


A novel correction method for the shear rate in a couette rheometer (Vortrag)

T. Rüther, S. Jesinghausen, H. Schmid. A novel correction method for the shear rate in a couette rheometer (Vortrag). In: AERC , Sevilla, 2022.


NEW CORRECTION APPROACHES FOR DETERMINING THE TRUE SHEAR RATE IN A COAXIAL-RHEOMETER (Vortrag)

T. Rüther, S. Jesinghausen, H. Schmid. NEW CORRECTION APPROACHES FOR DETERMINING THE TRUE SHEAR RATE IN A COAXIAL-RHEOMETER (Vortrag). In: Joint Online Symposium on Rheology 2022, 2022.


2021


Theoretische Beschreibung des Tropfenbildungsprozesses bei der Filament Extension Atomization: Entwicklung eines Vorhersagemodells für die Tropfengröße (Poster)

M. Neukötter, S. Jesinghausen, H. Schmid. Theoretische Beschreibung des Tropfenbildungsprozesses bei der Filament Extension Atomization: Entwicklung eines Vorhersagemodells für die Tropfengröße (Poster). In: Jahrestreffen der ProcessNet-Fachgruppen Computational Fluid Dynamics und Mehrphasenströmungen, Online, 2021.


Filament Extension Atomization – A novel Process for Powder Production? (Presentation)

M. Neukötter, S. Jesinghausen, H. Schmid. Filament Extension Atomization – A novel Process for Powder Production? (Presentation). In: Annual European Rheology Conference, Online, 2021.


2020

Interlaboratory study on rheological properties of cement pastes and reference substances: comparability of measurements performed with different rheometers and measurement geometries

M. Haist, J. Link, D. Nicia, S. Leinitz, C. Baumert, T. von Bronk, D. Cotardo, M. Eslami Pirharati, S. Fataei, H. Garrecht, C. Gehlen, I. Hauschildt, I. Ivanova, S. Jesinghausen, C. Klein, H. Krauss, L. Lohaus, D. Lowke, O. Mazanec, S. Pawelczyk, U. Pott, N.W. Radebe, J.J. Riedmiller, H. Schmid, W. Schmidt, E. Secrieru, D. Stephan, M. Thiedeitz, M. Wilhelm, V. Mechtcherine, Materials and Structures (2020)

This paper presents the results of an interlaboratory study of the rheological properties of cement paste and ultrasound gel as reference substance. The goal was to quantify the comparability and reproducibility of measurements of the Bingham parameters yield stress and plastic viscosity when measured on one specific paste composition and one particular ultrasound gel in different laboratories using different rheometers and measurement geometries. The procedures for both in preparing the cement paste and carrying out the rheological measurements on cement paste and ultrasound gel were carefully defined for all of the study’s participants. Different conversion schemes for comparing the results obtained with the different measurement setups are presented here and critically discussed. The procedure proposed in this paper ensured a reasonable comparability of the results with a coefficient of variation for the yield stress of 27% and for the plastic viscosity of 24%, despite the individual measurement series’ having been performed in different labs with different rheometers and measurement geometries.


Absolute Rheological Measurements of Model Suspensions: Influence and Correction of Wall Slip Prevention Measures

S. Pawelczyk, M. Kniepkamp, S. Jesinghausen, H. Schmid, Materials (2020), 467

<jats:p>Since suspensions (e.g., in food, cement, or cosmetics industries) tend to show wall slip, the application of structured measuring surfaces in rheometers is widespread. Usually, for parallel-plate geometries, the tip-to-tip distance is used for calculation of absolute rheological values, which implies that there is no flow behind this distance. However, several studies show that this is not true. Therefore, the measuring gap needs to be corrected by adding the effective gap extension δ to the prescribed gap height H in order to obtain absolute rheological properties. In this paper, we determine the effective gap extension δ for different structures and fluids (Newtonian, shear thinning, and model suspensions that can be adjusted to the behavior of real fluids) and compare the corrected values to reference data. We observe that for Newtonian fluids a gap- and material-independent correction function can be derived for every measuring system, which is also applicable to suspensions, but not to shear thinning fluids. Since this relation appears to be mainly dependent on the characteristics of flow behaviour, we show that the calibration of structured measuring systems is possible with Newtonian fluids and then can be transferred to suspensions up to a certain particle content.</jats:p>


2017


2016

Direct measurement of wall slip and slip layer thickness of non-Brownian hard-sphere suspensions in rectangular channel flows

S. Jesinghausen, R. Weiffen, H. Schmid, Experiments in Fluids (2016)

Wall slip is a long-known phenomenon in the field of rheology. Nevertheless, the origin and the evolution are not completely clear yet. Regarding suspensions, the effect becomes even more complicated, because different mechanisms like pure slip or slip due to particle migration have to be taken into account. Furthermore, suspensions themselves show many flow anomalies and the isolation of slip is complicated. In order to develop working physical models, further insight is necessary. In this work, we measured experimentally the wall slip velocities of different highly filled suspensions in a rectangular slit die directly with respect to the particle concentration and the particle size. The slip velocities were obtained using a particle image velocimetry (PIV) system. The suspensions consisting of a castor oil–cinnamon oil blend and PMMA particles were matched in terms of refractive indexes to appear transparent. Hereby, possible optical path lengths larger than 15 mm were achieved. The slip velocities were found to be in a quadratic relation to the wall shear stress. Furthermore, the overall flow rate as well as the particle concentration has a direct influence on the slip. Concerning the shear stress, there seem to be two regions of slip with different physical characteristics. Furthermore, we estimated the slip layer thickness directly from the velocity profiles and propose a new interpretation. The PIV technique is used to investigate the viscosity and implicit the concentration profile in the slit die. It is shown that the particle migration process is quite fast.


Open list in Research Information System

The University for the Information Society