Achtung:

Sie haben Javascript deaktiviert!
Sie haben versucht eine Funktion zu nutzen, die nur mit Javascript möglich ist. Um sämtliche Funktionalitäten unserer Internetseite zu nutzen, aktivieren Sie bitte Javascript in Ihrem Browser.

Bildinformationen anzeigen
Bildinformationen anzeigen
Bildinformationen anzeigen
Bildinformationen anzeigen
Bildinformationen anzeigen
Bildinformationen anzeigen
Bildinformationen anzeigen
Bildinformationen anzeigen
Bildinformationen anzeigen
Bildinformationen anzeigen
Bildinformationen anzeigen

Foto: LDM

Foto: LDM

Foto: @AdobeStock/Gorodenkoff

Foto: © AdobeStock/Gorodenkoff

Foto: @ Fraunhofer IOSB-INA

Foto: © AdobeStock/Gorodenkoff

Foto: @ Fraunhofer IEM

Foto: @ Heinz Nixdorf Institut

Foto: @ Heinz Nixdorf Institut

Foto: @ Heinz Nixdorf Institut

Foto: @AdobeStock/Gorodenkoff

Simon Pukrop

Kontakt
Publikationen

Liste im Research Information System öffnen

2022

(In-)Approximability Results for Interval, Resource Restricted, and Low Rank Scheduling

M. Maack, S. Pukrop, A.R. Rasmussen, in: 30th Annual European Symposium on Algorithms, ESA 2022, September 5-9, 2022, Berlin/Potsdam, Germany, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022, pp. 77:1–77:13

DOI


Server Cloud Scheduling

M. Maack, F. Meyer auf der Heide, S. Pukrop, in: Approximation and Online Algorithms, Springer International Publishing, 2022

DOI


2021

Full Version -- Server Cloud Scheduling

M. Maack, F. Meyer auf der Heide, S. Pukrop, in: arXiv:2108.02109, 2021

Consider a set of jobs connected to a directed acyclic task graph with a fixed source and sink. The edges of this graph model precedence constraints and the jobs have to be scheduled with respect to those. We introduce the Server Cloud Scheduling problem, in which the jobs have to be processed either on a single local machine or on one of many cloud machines. Both the source and the sink have to be scheduled on the local machine. For each job, processing times both on the server and in the cloud are given. Furthermore, for each edge in the task graph, a communication delay is included in the input and has to be taken into account if one of the two jobs is scheduled on the server, the other in the cloud. The server can process jobs sequentially, whereas the cloud can serve as many as needed in parallel, but induces costs. We consider both makespan and cost minimization. The main results are an FPTAS with respect for the makespan objective for a fairly general case and strong hardness for the case with unit processing times and delays.


2020

Approximating Weighted Completion Time for Order Scheduling with Setup Times

S. Pukrop, A. Mäcker, F. Meyer auf der Heide, in: Proceedings of the 46th International Conference on Current Trends in Theory and Practice of Computer Science (SOFSEM), 2020


Liste im Research Information System öffnen

Die Universität der Informationsgesellschaft